Cargando…
In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil
The study was designed to analyze and evaluate the antioxidant and antibacterial properties of the essential oils of Thymus pulegioides L. grown in Western Romania. Thymus pulegioides L. essential oil (TPEO) was extracted by steam distillation (0.71% v/w) using a Craveiro-type apparatus. GC-MS inves...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774620/ https://www.ncbi.nlm.nih.gov/pubmed/36552681 http://dx.doi.org/10.3390/antiox11122472 |
_version_ | 1784855453951328256 |
---|---|
author | Jianu, Călin Rusu, Laura-Cristina Muntean, Iulia Cocan, Ileana Lukinich-Gruia, Alexandra Teodora Goleț, Ionuț Horhat, Delia Mioc, Marius Mioc, Alexandra Șoica, Codruța Bujancă, Gabriel Ilie, Adrian Cosmin Muntean, Delia |
author_facet | Jianu, Călin Rusu, Laura-Cristina Muntean, Iulia Cocan, Ileana Lukinich-Gruia, Alexandra Teodora Goleț, Ionuț Horhat, Delia Mioc, Marius Mioc, Alexandra Șoica, Codruța Bujancă, Gabriel Ilie, Adrian Cosmin Muntean, Delia |
author_sort | Jianu, Călin |
collection | PubMed |
description | The study was designed to analyze and evaluate the antioxidant and antibacterial properties of the essential oils of Thymus pulegioides L. grown in Western Romania. Thymus pulegioides L. essential oil (TPEO) was extracted by steam distillation (0.71% v/w) using a Craveiro-type apparatus. GC-MS investigation of the TPEO identified 39 different compounds, representing 98.46% of total oil. Findings revealed that thymol (22.89%) is the main compound of TPEO, followed by para-cymene (14.57%), thymol methyl ether (11.19%), isothymol methyl ether (10.45%), and beta-bisabolene (9.53%). The oil exhibits good antibacterial effects; C. parapsilosis, C. albicans, S. pyogenes, and S. aureus were the most sensitive strains. The antioxidant activity of TPEO was evaluated by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium] (ABTS) radical scavenging assay, and beta-carotene/linoleic acid bleaching testing. The antioxidative data recorded reveal, for the first time, that TPEO inhibits primary and secondary oxidation products, in some particular conditions, better than butylated hydroxyanisole (BHA) with significant statistical difference (p < 0.05). Moreover, TPEO antioxidant capabilities in DPPH and ABTS assays outperformed alpha-tocopherol (p < 0.001) and delta-tocopherol (p < 0.001). Molecular docking analysis revealed that one potential target correlated with the TPEO antimicrobial activity was d-alanine-d-alanine ligase (DDl). The best scoring ligand, linalyl anthranilate, shared highly similar binding patterns with the DDl native inhibitor. Furthermore, molecular docking analysis also showed that the main constituents of TPEO are good candidates for xanthine oxidase and lipoxygenase inhibition, making the essential oil a valuable source for protein-targeted antioxidant compounds. Consequently, TPEO may represent a new potential source of antioxidant and antibacterial agents with applicability in the food and pharmaceutic industries. |
format | Online Article Text |
id | pubmed-9774620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97746202022-12-23 In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil Jianu, Călin Rusu, Laura-Cristina Muntean, Iulia Cocan, Ileana Lukinich-Gruia, Alexandra Teodora Goleț, Ionuț Horhat, Delia Mioc, Marius Mioc, Alexandra Șoica, Codruța Bujancă, Gabriel Ilie, Adrian Cosmin Muntean, Delia Antioxidants (Basel) Article The study was designed to analyze and evaluate the antioxidant and antibacterial properties of the essential oils of Thymus pulegioides L. grown in Western Romania. Thymus pulegioides L. essential oil (TPEO) was extracted by steam distillation (0.71% v/w) using a Craveiro-type apparatus. GC-MS investigation of the TPEO identified 39 different compounds, representing 98.46% of total oil. Findings revealed that thymol (22.89%) is the main compound of TPEO, followed by para-cymene (14.57%), thymol methyl ether (11.19%), isothymol methyl ether (10.45%), and beta-bisabolene (9.53%). The oil exhibits good antibacterial effects; C. parapsilosis, C. albicans, S. pyogenes, and S. aureus were the most sensitive strains. The antioxidant activity of TPEO was evaluated by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium] (ABTS) radical scavenging assay, and beta-carotene/linoleic acid bleaching testing. The antioxidative data recorded reveal, for the first time, that TPEO inhibits primary and secondary oxidation products, in some particular conditions, better than butylated hydroxyanisole (BHA) with significant statistical difference (p < 0.05). Moreover, TPEO antioxidant capabilities in DPPH and ABTS assays outperformed alpha-tocopherol (p < 0.001) and delta-tocopherol (p < 0.001). Molecular docking analysis revealed that one potential target correlated with the TPEO antimicrobial activity was d-alanine-d-alanine ligase (DDl). The best scoring ligand, linalyl anthranilate, shared highly similar binding patterns with the DDl native inhibitor. Furthermore, molecular docking analysis also showed that the main constituents of TPEO are good candidates for xanthine oxidase and lipoxygenase inhibition, making the essential oil a valuable source for protein-targeted antioxidant compounds. Consequently, TPEO may represent a new potential source of antioxidant and antibacterial agents with applicability in the food and pharmaceutic industries. MDPI 2022-12-15 /pmc/articles/PMC9774620/ /pubmed/36552681 http://dx.doi.org/10.3390/antiox11122472 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jianu, Călin Rusu, Laura-Cristina Muntean, Iulia Cocan, Ileana Lukinich-Gruia, Alexandra Teodora Goleț, Ionuț Horhat, Delia Mioc, Marius Mioc, Alexandra Șoica, Codruța Bujancă, Gabriel Ilie, Adrian Cosmin Muntean, Delia In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil |
title | In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil |
title_full | In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil |
title_fullStr | In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil |
title_full_unstemmed | In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil |
title_short | In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil |
title_sort | in vitro and in silico evaluation of the antimicrobial and antioxidant potential of thymus pulegioides essential oil |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774620/ https://www.ncbi.nlm.nih.gov/pubmed/36552681 http://dx.doi.org/10.3390/antiox11122472 |
work_keys_str_mv | AT jianucalin invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT rusulauracristina invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT munteaniulia invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT cocanileana invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT lukinichgruiaalexandrateodora invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT goletionut invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT horhatdelia invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT miocmarius invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT miocalexandra invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT soicacodruta invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT bujancagabriel invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT ilieadriancosmin invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil AT munteandelia invitroandinsilicoevaluationoftheantimicrobialandantioxidantpotentialofthymuspulegioidesessentialoil |