Cargando…
The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases
Pieces of evidence support the view that the accumulation of uremic toxins enhances oxidative stress and downstream regulation of signaling pathways, contributing to both endothelial microangiography and cell dysfunction. This study is to address the impact of protein-binding uremic toxins on the se...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774783/ https://www.ncbi.nlm.nih.gov/pubmed/36552558 http://dx.doi.org/10.3390/antiox11122350 |
_version_ | 1784855493079990272 |
---|---|
author | Lai, Yun-Ru Cheng, Ben-Chung Lin, Chia-Ni Chiu, Wen-Chan Lin, Ting-Yin Chiang, Hui-Ching Kuo, Chun-En Aurea Huang, Chih-Cheng Lu, Cheng-Hsien |
author_facet | Lai, Yun-Ru Cheng, Ben-Chung Lin, Chia-Ni Chiu, Wen-Chan Lin, Ting-Yin Chiang, Hui-Ching Kuo, Chun-En Aurea Huang, Chih-Cheng Lu, Cheng-Hsien |
author_sort | Lai, Yun-Ru |
collection | PubMed |
description | Pieces of evidence support the view that the accumulation of uremic toxins enhances oxidative stress and downstream regulation of signaling pathways, contributing to both endothelial microangiography and cell dysfunction. This study is to address the impact of protein-binding uremic toxins on the severity of peripheral nerve function in patients with chronic kidney disease (CKD). Fifty-four patients with CKD were included in the Toronto Clinical Neuropathy Score (TCNS), nerve conduction study (NCS), and laboratory studies including protein-binding uremic toxin (indoxyl sulfate [IS] and p-cresyl sulfate [PCS]), oxidative stress (Thiol and thiobarbituric acid reacting substances [TBARS]), and endothelial dysfunction (serum intercellular adhesion molecule 1 [sICAM-1] and serum vascular adhesion molecule 1 [sVCAM-1]) at enrollment. We used composite amplitude scores (CAS) to analyze the severity of nerve conductions on peripheral nerve function. TCNS and CAS were higher in the diabetic CKD group (p = 0.02 and 0.01, respectively). The NCS revealed the compound muscle action potential of ulnar and peroneal nerves and the sensory nerve action potential of ulnar and sural nerves (p = 0.004, p = 0.004, p = 0.004, and p = 0.001, respectively), which was found to be significantly low in the diabetic group. CAS was significantly correlated with age (r = 0.27, p = 0.04), urine albumin-creatinine ratio (UACR) (r = 0.29, p = 0.046), free-form IS (r = 0.39, p = 0.009), sICAM-1 (r = 0.31, p = 0.02), sVCAM-1 (r = 0.44, p < 0.0001), TBARS (r = 0.35, p = 0.002), and thiols (r = −0.28, p = 0.045). Linear regression revealed that only TBARS and free-form IS were strongly associated with CAS. The mediation analysis shows that the sVCAM-1 level serves as the mediator between higher IS and higher CAS. IS and oxidative stress contribute to the severity of peripheral nerve dysfunction in patients with CKD, and chronic glycemic impairment can worsen the conditions. |
format | Online Article Text |
id | pubmed-9774783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97747832022-12-23 The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases Lai, Yun-Ru Cheng, Ben-Chung Lin, Chia-Ni Chiu, Wen-Chan Lin, Ting-Yin Chiang, Hui-Ching Kuo, Chun-En Aurea Huang, Chih-Cheng Lu, Cheng-Hsien Antioxidants (Basel) Article Pieces of evidence support the view that the accumulation of uremic toxins enhances oxidative stress and downstream regulation of signaling pathways, contributing to both endothelial microangiography and cell dysfunction. This study is to address the impact of protein-binding uremic toxins on the severity of peripheral nerve function in patients with chronic kidney disease (CKD). Fifty-four patients with CKD were included in the Toronto Clinical Neuropathy Score (TCNS), nerve conduction study (NCS), and laboratory studies including protein-binding uremic toxin (indoxyl sulfate [IS] and p-cresyl sulfate [PCS]), oxidative stress (Thiol and thiobarbituric acid reacting substances [TBARS]), and endothelial dysfunction (serum intercellular adhesion molecule 1 [sICAM-1] and serum vascular adhesion molecule 1 [sVCAM-1]) at enrollment. We used composite amplitude scores (CAS) to analyze the severity of nerve conductions on peripheral nerve function. TCNS and CAS were higher in the diabetic CKD group (p = 0.02 and 0.01, respectively). The NCS revealed the compound muscle action potential of ulnar and peroneal nerves and the sensory nerve action potential of ulnar and sural nerves (p = 0.004, p = 0.004, p = 0.004, and p = 0.001, respectively), which was found to be significantly low in the diabetic group. CAS was significantly correlated with age (r = 0.27, p = 0.04), urine albumin-creatinine ratio (UACR) (r = 0.29, p = 0.046), free-form IS (r = 0.39, p = 0.009), sICAM-1 (r = 0.31, p = 0.02), sVCAM-1 (r = 0.44, p < 0.0001), TBARS (r = 0.35, p = 0.002), and thiols (r = −0.28, p = 0.045). Linear regression revealed that only TBARS and free-form IS were strongly associated with CAS. The mediation analysis shows that the sVCAM-1 level serves as the mediator between higher IS and higher CAS. IS and oxidative stress contribute to the severity of peripheral nerve dysfunction in patients with CKD, and chronic glycemic impairment can worsen the conditions. MDPI 2022-11-28 /pmc/articles/PMC9774783/ /pubmed/36552558 http://dx.doi.org/10.3390/antiox11122350 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lai, Yun-Ru Cheng, Ben-Chung Lin, Chia-Ni Chiu, Wen-Chan Lin, Ting-Yin Chiang, Hui-Ching Kuo, Chun-En Aurea Huang, Chih-Cheng Lu, Cheng-Hsien The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases |
title | The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases |
title_full | The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases |
title_fullStr | The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases |
title_full_unstemmed | The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases |
title_short | The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases |
title_sort | effects of indoxyl sulfate and oxidative stress on the severity of peripheral nerve dysfunction in patients with chronic kidney diseases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774783/ https://www.ncbi.nlm.nih.gov/pubmed/36552558 http://dx.doi.org/10.3390/antiox11122350 |
work_keys_str_mv | AT laiyunru theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT chengbenchung theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT linchiani theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT chiuwenchan theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT lintingyin theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT chianghuiching theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT kuochunenaurea theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT huangchihcheng theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT luchenghsien theeffectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT laiyunru effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT chengbenchung effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT linchiani effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT chiuwenchan effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT lintingyin effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT chianghuiching effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT kuochunenaurea effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT huangchihcheng effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases AT luchenghsien effectsofindoxylsulfateandoxidativestressontheseverityofperipheralnervedysfunctioninpatientswithchronickidneydiseases |