Cargando…
Interpretable and Predictive Deep Neural Network Modeling of the SARS-CoV-2 Spike Protein Sequence to Predict COVID-19 Disease Severity
SIMPLE SUMMARY: As COVID-19 shifts from pandemic to endemic, emerging variants may be more or less virulent. Predicting whether an emerging COVID-19 variant has of high risk of causing severe disease is needed to plan for potential burdens on hospital capacity and protecting vulnerable populations....
Autores principales: | Sokhansanj, Bahrad A., Zhao, Zhengqiao, Rosen, Gail L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774807/ https://www.ncbi.nlm.nih.gov/pubmed/36552295 http://dx.doi.org/10.3390/biology11121786 |
Ejemplares similares
-
Predicting COVID-19 disease severity from SARS-CoV-2 spike protein sequence by mixed effects machine learning
por: Sokhansanj, Bahrad A., et al.
Publicado: (2022) -
Amino Acid k-mer Feature Extraction for Quantitative Antimicrobial Resistance (AMR) Prediction by Machine Learning and Model Interpretation for Biological Insights
por: ValizadehAslani, Taha, et al.
Publicado: (2020) -
Genetic grouping of SARS-CoV-2 coronavirus sequences using informative subtype markers for pandemic spread visualization
por: Zhao, Zhengqiao, et al.
Publicado: (2020) -
Mapping Data to Deep Understanding: Making the Most of the Deluge of SARS-CoV-2 Genome Sequences
por: Sokhansanj, Bahrad A., et al.
Publicado: (2022) -
Learning, visualizing and exploring 16S rRNA structure using an attention-based deep neural network
por: Zhao, Zhengqiao, et al.
Publicado: (2021)