Cargando…
Unsupervised segmentation of biomedical hyperspectral image data: tackling high dimensionality with convolutional autoencoders
Information about the structure and composition of biopsy specimens can assist in disease monitoring and diagnosis. In principle, this can be acquired from Raman and infrared (IR) hyperspectral images (HSIs) that encode information about how a sample’s constituent molecules are arranged in space. Ea...
Autores principales: | Bench, Ciaran, Nallala, Jayakrupakar, Wang, Chun-Chin, Sheridan, Hannah, Stone, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optica Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774878/ https://www.ncbi.nlm.nih.gov/pubmed/36589581 http://dx.doi.org/10.1364/BOE.476233 |
Ejemplares similares
-
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
Investigating Beta-Variational Convolutional Autoencoders for the Unsupervised Classification of Chest Pneumonia
por: Akila, Serag Mohamed, et al.
Publicado: (2023) -
CAEVT: Convolutional Autoencoder Meets Lightweight Vision Transformer for Hyperspectral Image Classification
por: Zhang, Zhiwen, et al.
Publicado: (2022) -
Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
por: Sherif, Fayroz F., et al.
Publicado: (2022) -
An unsupervised strategy for biomedical image segmentation
por: Rodríguez, Roberto, et al.
Publicado: (2010)