Cargando…
Surgical Gesture Recognition in Laparoscopic Tasks Based on the Transformer Network and Self-Supervised Learning
In this study, we propose a deep learning framework and a self-supervision scheme for video-based surgical gesture recognition. The proposed framework is modular. First, a 3D convolutional network extracts feature vectors from video clips for encoding spatial and short-term temporal features. Second...
Autores principales: | Gazis, Athanasios, Karaiskos, Pantelis, Loukas, Constantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774918/ https://www.ncbi.nlm.nih.gov/pubmed/36550943 http://dx.doi.org/10.3390/bioengineering9120737 |
Ejemplares similares
-
Surgical Performance Analysis and Classification Based on Video Annotation of Laparoscopic Tasks
por: Loukas, Constantinos, et al.
Publicado: (2020) -
Self-supervised representation learning for surgical activity recognition
por: Paysan, Daniel, et al.
Publicado: (2021) -
Semi-Supervised Joint Learning for Hand Gesture Recognition from a Single Color Image
por: Xu, Chi, et al.
Publicado: (2021) -
Gait Recognition with Self-Supervised Learning of Gait Features Based on Vision Transformers
por: Pinčić, Domagoj, et al.
Publicado: (2022) -
HGR-ViT: Hand Gesture Recognition with Vision Transformer
por: Tan, Chun Keat, et al.
Publicado: (2023)