Cargando…
Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals—A Systematic Literature Review
Electroencephalography (EEG) is a complicated, non-stationary signal that requires extensive preprocessing and feature extraction approaches to be accurately analyzed. In recent times, Deep learning (DL) has shown great promise in exploiting the characteristics of EEG signals as it can learn relevan...
Autores principales: | Nafea, Mohamed Sami, Ismail, Zool Hilmi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774931/ https://www.ncbi.nlm.nih.gov/pubmed/36550987 http://dx.doi.org/10.3390/bioengineering9120781 |
Ejemplares similares
-
Review on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches
por: Natu, Milind, et al.
Publicado: (2022) -
Deep extreme learning machine with knowledge augmentation for EEG seizure signal recognition
por: Zhang, Xiongtao, et al.
Publicado: (2023) -
EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review
por: Ahmad, Ijaz, et al.
Publicado: (2022) -
Wearable Epileptic Seizure Prediction System Based on Machine Learning Techniques Using ECG, PPG and EEG Signals
por: Zambrana-Vinaroz, David, et al.
Publicado: (2022) -
Epileptic Seizures Detection in EEG Signals Using Fusion Handcrafted and Deep Learning Features
por: Malekzadeh, Anis, et al.
Publicado: (2021)