Cargando…
Few-Electrode EEG from the Wearable Devices Using Domain Adaptation for Depression Detection
Nowadays, major depressive disorder (MDD) has become a crucial mental disease that endangers human health. Good results have been achieved by electroencephalogram (EEG) signals in the detection of depression. However, EEG signals are time-varying, and the distributions of the different subjects’ dat...
Autores principales: | Wu, Wei, Ma, Longhua, Lian, Bin, Cai, Weiming, Zhao, Xianghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775005/ https://www.ncbi.nlm.nih.gov/pubmed/36551054 http://dx.doi.org/10.3390/bios12121087 |
Ejemplares similares
-
Optimizing Electrode Configurations for Wearable EEG Seizure Detection Using Machine Learning
por: Gelbard-Sagiv, Hagar, et al.
Publicado: (2023) -
Quality Assessment of Single-Channel EEG for Wearable Devices
por: Grosselin, Fanny, et al.
Publicado: (2019) -
A Wearable In-Ear EEG Device for Emotion Monitoring
por: Athavipach, Chanavit, et al.
Publicado: (2019) -
Wearable EEG Device for Continuous Spike–Wave in Sleep
por: Oguni, Hirokazu
Publicado: (2020) -
Applying Deep Learning on a Few EEG Electrodes during Resting State Reveals Depressive States: A Data Driven Study
por: Jan, Damián, et al.
Publicado: (2022)