Cargando…

Altered White Matter Microstructure in Herpes Zoster and Postherpetic Neuralgia Determined by Automated Fiber Quantification

This study aimed to explore changes in the white matter microstructure in herpes zoster (HZ) and postherpetic neuralgia (PHN) patients and to estimate the correlation of these changes with clinical data. Diffusion tensor imaging (DTI) data were collected from 33 HZ patients, 32 PHN patients, and 35...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ying, Gu, Lili, Hong, Shunda, Li, Jiahao, Yang, Jiaojiao, Xiong, Jiaxin, Lv, Huiting, Jiang, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775099/
https://www.ncbi.nlm.nih.gov/pubmed/36552128
http://dx.doi.org/10.3390/brainsci12121668
Descripción
Sumario:This study aimed to explore changes in the white matter microstructure in herpes zoster (HZ) and postherpetic neuralgia (PHN) patients and to estimate the correlation of these changes with clinical data. Diffusion tensor imaging (DTI) data were collected from 33 HZ patients, 32 PHN patients, and 35 well-matched healthy controls (HCs). Subsequently, these data were analyzed by automated fiber quantification (AFQ) to accurately locate alterations in the white matter microstructure. Compared with HCs, HZ and PHN patients both showed a wide range of changes in the diffusion properties of fiber tracts. HZ patients exhibited changes primarily in the left superior longitudinal fasciculus (SLF), whereas PHN patients predominantly exhibited changes in the left inferior fronto-occipital fasciculus. The bilateral SLF and the left corticospinal tract were altered in the PHN patients compared with HZ patients. In addition, PHN patients showed a trend toward more expansive white matter alterations compared with those observed in HZ patients; additionally, in PHN patients, changes in the left cingulum cingulate were significantly correlated with changes in emotion and the duration of disease. These findings may help to elucidate the transformation from HZ to PHN and provide new ideas regarding the reasons for intractable neuropathic pain in PHN.