Cargando…

Sulfidation and Reoxidation of U(VI)-Incorporated Goethite: Implications for U Retention during Sub-Surface Redox Cycling

[Image: see text] Over 60 years of nuclear activity have resulted in a global legacy of contaminated land and radioactive waste. Uranium (U) is a significant component of this legacy and is present in radioactive wastes and at many contaminated sites. U-incorporated iron (oxyhydr)oxides may provide...

Descripción completa

Detalles Bibliográficos
Autores principales: Stagg, Olwen, Morris, Katherine, Townsend, Luke Thomas, Kvashnina, Kristina O., Baker, Michael L., Dempsey, Ryan L., Abrahamsen-Mills, Liam, Shaw, Samuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775214/
https://www.ncbi.nlm.nih.gov/pubmed/36449568
http://dx.doi.org/10.1021/acs.est.2c05314
Descripción
Sumario:[Image: see text] Over 60 years of nuclear activity have resulted in a global legacy of contaminated land and radioactive waste. Uranium (U) is a significant component of this legacy and is present in radioactive wastes and at many contaminated sites. U-incorporated iron (oxyhydr)oxides may provide a long-term barrier to U migration in the environment. However, reductive dissolution of iron (oxyhydr)oxides can occur on reaction with aqueous sulfide (sulfidation), a common environmental species, due to the microbial reduction of sulfate. In this work, U(VI)–goethite was initially reacted with aqueous sulfide, followed by a reoxidation reaction, to further understand the long-term fate of U species under fluctuating environmental conditions. Over the first day of sulfidation, a transient release of aqueous U was observed, likely due to intermediate uranyl(VI)–persulfide species. Despite this, overall U was retained in the solid phase, with the formation of nanocrystalline U(IV)O(2) in the sulfidized system along with a persistent U(V) component. On reoxidation, U was associated with an iron (oxyhydr)oxide phase either as an adsorbed uranyl (approximately 65%) or an incorporated U (35%) species. These findings support the overarching concept of iron (oxyhydr)oxides acting as a barrier to U migration in the environment, even under fluctuating redox conditions.