Cargando…
A Few-Shot Learning-Based EEG and Stage Transition Sequence Generator for Improving Sleep Staging Performance
In this study, generative adversarial networks named SleepGAN are proposed to expand the training set for automatic sleep stage classification tasks by generating both electroencephalogram (EEG) epochs and sequence relationships of sleep stages. In order to reach high accuracy, most existing classif...
Autores principales: | You, Yuyang, Guo, Xiaoyu, Zhong, Xuyang, Yang, Zhihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775526/ https://www.ncbi.nlm.nih.gov/pubmed/36551762 http://dx.doi.org/10.3390/biomedicines10123006 |
Ejemplares similares
-
A Siamese Network-Based Method for Improving the Performance of Sleep Staging with Single-Channel EEG
por: You, Yuyang, et al.
Publicado: (2023) -
Multi-Stage Meta-Learning for Few-Shot with Lie Group Network Constraint
por: Dong, Fang, et al.
Publicado: (2020) -
FewJoint: few-shot learning for joint dialogue understanding
por: Hou, Yutai, et al.
Publicado: (2022) -
Learning few-shot imitation as cultural transmission
por: Bhoopchand, Avishkar, et al.
Publicado: (2023) -
Few-shot short utterance speaker verification using meta-learning
por: Wang, Weijie, et al.
Publicado: (2023)