Cargando…
Identification of Resting-State Network Functional Connectivity and Brain Structural Signatures in Fibromyalgia Using a Machine Learning Approach
Abnormal resting-state functional connectivity (rs-FC) and brain structure have emerged as pathological hallmarks of fibromyalgia (FM). This study investigated and compared the accuracy of network rs-FC and brain structural features in identifying FM with a machine learning (ML) approach. Twenty-six...
Autores principales: | Thanh Nhu, Nguyen, Chen, David Yen-Ting, Kang, Jiunn-Horng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775534/ https://www.ncbi.nlm.nih.gov/pubmed/36551758 http://dx.doi.org/10.3390/biomedicines10123002 |
Ejemplares similares
-
Resting state electrical brain activity and connectivity in fibromyalgia
por: Vanneste, Sven, et al.
Publicado: (2017) -
Resting state connectivity correlates with drug and placebo response in fibromyalgia patients
por: Schmidt-Wilcke, T., et al.
Publicado: (2014) -
Discriminating stress from rest based on resting‐state connectivity of the human brain: A supervised machine learning study
por: Zhang, Wei, et al.
Publicado: (2020) -
Altered insula–default mode network connectivity in fibromyalgia: a resting-state magnetoencephalographic study
por: Hsiao, Fu-Jung, et al.
Publicado: (2017) -
Disrupted Resting State Network of Fibromyalgia in Theta frequency
por: Choe, Mi Kyung, et al.
Publicado: (2018)