Cargando…
Development of a Gastrointestinal-Myoelectrical-Activity-Based Nomogram Model for Predicting the Risk of Mild Cognitive Impairment
Mild cognitive impairment (MCI) is the prodromal stage and an important risk factor of Alzheimer’s disease (AD). Interventions at the MCI stage are significant in reducing the occurrence of AD. However, there are still many obstacles to the screening of MCI, resulting in a large number of patients g...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775682/ https://www.ncbi.nlm.nih.gov/pubmed/36551289 http://dx.doi.org/10.3390/biom12121861 |
_version_ | 1784855704521146368 |
---|---|
author | Li, Baichuan Ji, Shuming Peng, Anjiao Yang, Na Zhao, Xia Feng, Peimin Zhang, Yunwu Chen, Lei |
author_facet | Li, Baichuan Ji, Shuming Peng, Anjiao Yang, Na Zhao, Xia Feng, Peimin Zhang, Yunwu Chen, Lei |
author_sort | Li, Baichuan |
collection | PubMed |
description | Mild cognitive impairment (MCI) is the prodromal stage and an important risk factor of Alzheimer’s disease (AD). Interventions at the MCI stage are significant in reducing the occurrence of AD. However, there are still many obstacles to the screening of MCI, resulting in a large number of patients going undetected. Given the strong correlation between gastrointestinal function and neuropsychiatric disorders, the aim of this study is to develop a risk prediction model for MCI based on gastrointestinal myoelectrical activity. The Mini-Mental State Examination and electrogastroenterography were applied to 886 participants in western China. All participants were randomly assigned to the training and validation sets in a ratio of 7:3. In the training set, risk variables were screened using LASSO regression and logistic regression, and risk prediction models were built based on nomogram and decision curve analysis, then validation was performed. Eight predictors were selected in the training set, including four electrogastroenterography parameters (rhythm disturbance, dominant frequency and dominant power ratio of gastric channel after meal, and time difference of intestinal channel after meal). The area under the ROC curve for the prediction model was 0.74 in the training set and 0.75 in the validation set, both of which exhibited great prediction ability. Furthermore, decision curve analysis displayed that the net benefit was more desirable when the risk thresholds ranged from 15% to 35%, indicating that the nomogram was clinically usable. The model based on gastrointestinal myoelectrical activity has great significance in predicting the risk of MCI and is expected to be an alternative to scales assessment. |
format | Online Article Text |
id | pubmed-9775682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97756822022-12-23 Development of a Gastrointestinal-Myoelectrical-Activity-Based Nomogram Model for Predicting the Risk of Mild Cognitive Impairment Li, Baichuan Ji, Shuming Peng, Anjiao Yang, Na Zhao, Xia Feng, Peimin Zhang, Yunwu Chen, Lei Biomolecules Article Mild cognitive impairment (MCI) is the prodromal stage and an important risk factor of Alzheimer’s disease (AD). Interventions at the MCI stage are significant in reducing the occurrence of AD. However, there are still many obstacles to the screening of MCI, resulting in a large number of patients going undetected. Given the strong correlation between gastrointestinal function and neuropsychiatric disorders, the aim of this study is to develop a risk prediction model for MCI based on gastrointestinal myoelectrical activity. The Mini-Mental State Examination and electrogastroenterography were applied to 886 participants in western China. All participants were randomly assigned to the training and validation sets in a ratio of 7:3. In the training set, risk variables were screened using LASSO regression and logistic regression, and risk prediction models were built based on nomogram and decision curve analysis, then validation was performed. Eight predictors were selected in the training set, including four electrogastroenterography parameters (rhythm disturbance, dominant frequency and dominant power ratio of gastric channel after meal, and time difference of intestinal channel after meal). The area under the ROC curve for the prediction model was 0.74 in the training set and 0.75 in the validation set, both of which exhibited great prediction ability. Furthermore, decision curve analysis displayed that the net benefit was more desirable when the risk thresholds ranged from 15% to 35%, indicating that the nomogram was clinically usable. The model based on gastrointestinal myoelectrical activity has great significance in predicting the risk of MCI and is expected to be an alternative to scales assessment. MDPI 2022-12-12 /pmc/articles/PMC9775682/ /pubmed/36551289 http://dx.doi.org/10.3390/biom12121861 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Baichuan Ji, Shuming Peng, Anjiao Yang, Na Zhao, Xia Feng, Peimin Zhang, Yunwu Chen, Lei Development of a Gastrointestinal-Myoelectrical-Activity-Based Nomogram Model for Predicting the Risk of Mild Cognitive Impairment |
title | Development of a Gastrointestinal-Myoelectrical-Activity-Based Nomogram Model for Predicting the Risk of Mild Cognitive Impairment |
title_full | Development of a Gastrointestinal-Myoelectrical-Activity-Based Nomogram Model for Predicting the Risk of Mild Cognitive Impairment |
title_fullStr | Development of a Gastrointestinal-Myoelectrical-Activity-Based Nomogram Model for Predicting the Risk of Mild Cognitive Impairment |
title_full_unstemmed | Development of a Gastrointestinal-Myoelectrical-Activity-Based Nomogram Model for Predicting the Risk of Mild Cognitive Impairment |
title_short | Development of a Gastrointestinal-Myoelectrical-Activity-Based Nomogram Model for Predicting the Risk of Mild Cognitive Impairment |
title_sort | development of a gastrointestinal-myoelectrical-activity-based nomogram model for predicting the risk of mild cognitive impairment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9775682/ https://www.ncbi.nlm.nih.gov/pubmed/36551289 http://dx.doi.org/10.3390/biom12121861 |
work_keys_str_mv | AT libaichuan developmentofagastrointestinalmyoelectricalactivitybasednomogrammodelforpredictingtheriskofmildcognitiveimpairment AT jishuming developmentofagastrointestinalmyoelectricalactivitybasednomogrammodelforpredictingtheriskofmildcognitiveimpairment AT penganjiao developmentofagastrointestinalmyoelectricalactivitybasednomogrammodelforpredictingtheriskofmildcognitiveimpairment AT yangna developmentofagastrointestinalmyoelectricalactivitybasednomogrammodelforpredictingtheriskofmildcognitiveimpairment AT zhaoxia developmentofagastrointestinalmyoelectricalactivitybasednomogrammodelforpredictingtheriskofmildcognitiveimpairment AT fengpeimin developmentofagastrointestinalmyoelectricalactivitybasednomogrammodelforpredictingtheriskofmildcognitiveimpairment AT zhangyunwu developmentofagastrointestinalmyoelectricalactivitybasednomogrammodelforpredictingtheriskofmildcognitiveimpairment AT chenlei developmentofagastrointestinalmyoelectricalactivitybasednomogrammodelforpredictingtheriskofmildcognitiveimpairment |