Cargando…
Granger-Causality-Based Multi-Frequency Band EEG Graph Feature Extraction and Fusion for Emotion Recognition
Graph convolutional neural networks (GCN) have attracted much attention in the task of electroencephalogram (EEG) emotion recognition. However, most features of current GCNs do not take full advantage of the causal connection between the EEG signals in different frequency bands during the process of...
Autores principales: | Zhang, Jing, Zhang, Xueying, Chen, Guijun, Zhao, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776073/ https://www.ncbi.nlm.nih.gov/pubmed/36552109 http://dx.doi.org/10.3390/brainsci12121649 |
Ejemplares similares
-
EEG emotion recognition based on cross-frequency granger causality feature extraction and fusion in the left and right hemispheres
por: Zhang, Jing, et al.
Publicado: (2022) -
Emotion Recognition Using a Novel Granger Causality Quantifier and Combined Electrodes of EEG
por: Goshvarpour, Atefeh, et al.
Publicado: (2023) -
Fusion Graph Representation of EEG for Emotion Recognition
por: Li, Menghang, et al.
Publicado: (2023) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Frequency Domain Repercussions of Instantaneous Granger Causality
por: Baccalá, Luiz A., et al.
Publicado: (2021)