Cargando…
Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein
The large surface area/volume ratio and controllable surface conformation of electrospun nanofibers (ENFs) make them highly attractive in applications where a large surface area is desired, such as sensors and affinity membranes. In this study, nanocomposite-based ENFs were produced and immobilizati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776388/ https://www.ncbi.nlm.nih.gov/pubmed/36551142 http://dx.doi.org/10.3390/bios12121175 |
_version_ | 1784855853295206400 |
---|---|
author | Ketmen, Simge Er Zeybekler, Simge Gelen, Sultan Sacide Odaci, Dilek |
author_facet | Ketmen, Simge Er Zeybekler, Simge Gelen, Sultan Sacide Odaci, Dilek |
author_sort | Ketmen, Simge |
collection | PubMed |
description | The large surface area/volume ratio and controllable surface conformation of electrospun nanofibers (ENFs) make them highly attractive in applications where a large surface area is desired, such as sensors and affinity membranes. In this study, nanocomposite-based ENFs were produced and immobilization of Anti-CRP was carried out for the non-invasive detection of C-reactive protein (CRP). Initially, the synthesis of graphene oxide (GO) was carried out and it was modified with magnetic nanoparticles (MNP, Fe(3)O(4)) and polydopamine (PDA). Catechol-containing and quinone-containing functional groups were created on the nanocomposite surface for the immobilization of Anti-CRP. Polystyrene (PS) solution was mixed with rGO-MNP-PDA nanocomposite and PS/rGO-MNP-PDA ENFs were produced with bead-free, smooth, and uniform. The surface of the screen-printed carbon electrode (SPCE) was covered with PS/rGO-MNP-PDA ENFs by using the electrospinning technique under the determined optimum conditions. Next, Anti-CRP immobilization was carried out and the biofunctional surface was created on the PS/rGO-MNP-PDA ENFs coated SPCE. Moreover, PS/rGO-PDA/Anti-CRP and PS/MNP-PDA/Anti-CRP immunosensors were also prepared and the effect of each component in the nanocomposite-based electrospun nanofiber (MNP, rGO) on the sensor response was investigated. The analytic performance of the developed PS/rGO-MNP-PDA/Anti-CRP, PS/rGO-PDA/Anti-CRP, and PS/MNP-PDA/Anti-CRP immunosensors were examined by performing electrochemical measurements in the presence of CRP. The linear detection range of PS/rGO-MNP-PDA/Anti-CRP immunosensor was found to be from 0.5 to 60 ng/mL and the limit of detection (LOD) was calculated as 0.33 ng/mL for CRP. The PS/rGO-MNP-PDA/Anti-CRP immunosensor also exhibited good repeatability with a low coefficient of variation. |
format | Online Article Text |
id | pubmed-9776388 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97763882022-12-23 Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein Ketmen, Simge Er Zeybekler, Simge Gelen, Sultan Sacide Odaci, Dilek Biosensors (Basel) Article The large surface area/volume ratio and controllable surface conformation of electrospun nanofibers (ENFs) make them highly attractive in applications where a large surface area is desired, such as sensors and affinity membranes. In this study, nanocomposite-based ENFs were produced and immobilization of Anti-CRP was carried out for the non-invasive detection of C-reactive protein (CRP). Initially, the synthesis of graphene oxide (GO) was carried out and it was modified with magnetic nanoparticles (MNP, Fe(3)O(4)) and polydopamine (PDA). Catechol-containing and quinone-containing functional groups were created on the nanocomposite surface for the immobilization of Anti-CRP. Polystyrene (PS) solution was mixed with rGO-MNP-PDA nanocomposite and PS/rGO-MNP-PDA ENFs were produced with bead-free, smooth, and uniform. The surface of the screen-printed carbon electrode (SPCE) was covered with PS/rGO-MNP-PDA ENFs by using the electrospinning technique under the determined optimum conditions. Next, Anti-CRP immobilization was carried out and the biofunctional surface was created on the PS/rGO-MNP-PDA ENFs coated SPCE. Moreover, PS/rGO-PDA/Anti-CRP and PS/MNP-PDA/Anti-CRP immunosensors were also prepared and the effect of each component in the nanocomposite-based electrospun nanofiber (MNP, rGO) on the sensor response was investigated. The analytic performance of the developed PS/rGO-MNP-PDA/Anti-CRP, PS/rGO-PDA/Anti-CRP, and PS/MNP-PDA/Anti-CRP immunosensors were examined by performing electrochemical measurements in the presence of CRP. The linear detection range of PS/rGO-MNP-PDA/Anti-CRP immunosensor was found to be from 0.5 to 60 ng/mL and the limit of detection (LOD) was calculated as 0.33 ng/mL for CRP. The PS/rGO-MNP-PDA/Anti-CRP immunosensor also exhibited good repeatability with a low coefficient of variation. MDPI 2022-12-16 /pmc/articles/PMC9776388/ /pubmed/36551142 http://dx.doi.org/10.3390/bios12121175 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ketmen, Simge Er Zeybekler, Simge Gelen, Sultan Sacide Odaci, Dilek Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein |
title | Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein |
title_full | Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein |
title_fullStr | Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein |
title_full_unstemmed | Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein |
title_short | Graphene Oxide-Magnetic Nanoparticles Loaded Polystyrene-Polydopamine Electrospun Nanofibers Based Nanocomposites for Immunosensing Application of C-Reactive Protein |
title_sort | graphene oxide-magnetic nanoparticles loaded polystyrene-polydopamine electrospun nanofibers based nanocomposites for immunosensing application of c-reactive protein |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776388/ https://www.ncbi.nlm.nih.gov/pubmed/36551142 http://dx.doi.org/10.3390/bios12121175 |
work_keys_str_mv | AT ketmensimge grapheneoxidemagneticnanoparticlesloadedpolystyrenepolydopamineelectrospunnanofibersbasednanocompositesforimmunosensingapplicationofcreactiveprotein AT erzeybeklersimge grapheneoxidemagneticnanoparticlesloadedpolystyrenepolydopamineelectrospunnanofibersbasednanocompositesforimmunosensingapplicationofcreactiveprotein AT gelensultansacide grapheneoxidemagneticnanoparticlesloadedpolystyrenepolydopamineelectrospunnanofibersbasednanocompositesforimmunosensingapplicationofcreactiveprotein AT odacidilek grapheneoxidemagneticnanoparticlesloadedpolystyrenepolydopamineelectrospunnanofibersbasednanocompositesforimmunosensingapplicationofcreactiveprotein |