Cargando…
Evaluating the Feasibility of Machine-Learning-Based Predictive Models for Precancerous Cervical Lesions in Patients Referred for Colposcopy
Background: Colposcopy plays an essential role in cervical cancer control, but its performance remains unsatisfactory. This study evaluates the feasibility of machine learning (ML) models for predicting high-grade squamous intraepithelial lesions or worse (HSIL+) in patients referred for colposcopy...
Autores principales: | Chen, Mingyang, Wang, Jiaxu, Xue, Peng, Li, Qing, Jiang, Yu, Qiao, Youlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776471/ https://www.ncbi.nlm.nih.gov/pubmed/36553073 http://dx.doi.org/10.3390/diagnostics12123066 |
Ejemplares similares
-
Colposcopy accuracy in diagnosing cervical precancerous lesions in western Kazakhstan
por: Balmagambetova, Saule, et al.
Publicado: (2020) -
The Accuracy of Cytology, Colposcopy and Pathology in Evaluating Precancerous Cervical Lesions
por: Pleş, Liana, et al.
Publicado: (2022) -
Colposcopic accuracy in diagnosing squamous intraepithelial lesions: a systematic review and meta-analysis of the International Federation of Cervical Pathology and Colposcopy 2011 terminology
por: Qin, Dongxu, et al.
Publicado: (2023) -
Risk-Based Colposcopy for Cervical Precancer Detection: A Cross-Sectional Multicenter Study in China
por: Xue, Peng, et al.
Publicado: (2022) -
The challenges of colposcopy for cervical cancer screening in LMICs and solutions by artificial intelligence
por: Xue, Peng, et al.
Publicado: (2020)