Cargando…
SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
MicroRNA (miRNA)-disease association (MDA) prediction is critical for disease prevention, diagnosis, and treatment. Traditional MDA wet experiments, on the other hand, are inefficient and costly.Therefore, we proposed a multi-layer collaborative unsupervised training base model called SGAEMDA (Stack...
Autores principales: | Wang, Shudong, Lin, Boyang, Zhang, Yuanyuan, Qiao, Sibo, Wang, Fuyu, Wu, Wenhao, Ren, Chuanru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776508/ https://www.ncbi.nlm.nih.gov/pubmed/36552748 http://dx.doi.org/10.3390/cells11243984 |
Ejemplares similares
-
AMCSMMA: Predicting Small Molecule–miRNA Potential Associations Based on Accurate Matrix Completion
por: Wang, Shudong, et al.
Publicado: (2023) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Pang, Shanchen, et al.
Publicado: (2021) -
SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost
por: Liu, Dayun, et al.
Publicado: (2021) -
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
por: Li, Lei, et al.
Publicado: (2021) -
Prediction of miRNA–Disease Associations by Cascade Forest Model Based on Stacked Autoencoder
por: Hu, Xiang, et al.
Publicado: (2023)