Cargando…
Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data
The development of genomic technology for smart diagnosis and therapies for various diseases has lately been the most demanding area for computer-aided diagnostic and treatment research. Exponential breakthroughs in artificial intelligence and machine intelligence technologies could pave the way for...
Autores principales: | Srinivasu, Parvathaneni Naga, Shafi, Jana, Krishna, T Balamurali, Sujatha, Canavoy Narahari, Praveen, S Phani, Ijaz, Muhammad Fazal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776641/ https://www.ncbi.nlm.nih.gov/pubmed/36553074 http://dx.doi.org/10.3390/diagnostics12123067 |
Ejemplares similares
-
ResNet-32 and FastAI for diagnoses of ductal carcinoma from 2D tissue slides
por: Praveen, S. Phani, et al.
Publicado: (2022) -
Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy
por: Vulli, Adarsh, et al.
Publicado: (2022) -
Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM
por: Srinivasu, Parvathaneni Naga, et al.
Publicado: (2021) -
Variational Autoencoders-BasedSelf-Learning Model for Tumor Identification and Impact Analysis from 2-D MRI Images
por: Naga Srinivasu, Parvathaneni, et al.
Publicado: (2023) -
Self-Learning Network-based segmentation for real-time brain M.R. images through HARIS
por: Naga Srinivasu, Parvathaneni, et al.
Publicado: (2021)