Cargando…
Human Fall Detection Using 3D Multi-Stream Convolutional Neural Networks with Fusion
Human falls, especially for elderly people, can cause serious injuries that might lead to permanent disability. Approximately 20–30% of the aged people in the United States who experienced fall accidents suffer from head trauma, injuries, or bruises. Fall detection is becoming an important public he...
Autores principales: | Alanazi, Thamer, Muhammad, Ghulam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776658/ https://www.ncbi.nlm.nih.gov/pubmed/36553066 http://dx.doi.org/10.3390/diagnostics12123060 |
Ejemplares similares
-
Multi-Stream Convolution-Recurrent Neural Networks Based on Attention Mechanism Fusion for Speech Emotion Recognition
por: Tao, Huawei, et al.
Publicado: (2022) -
Accelerometer-Based Human Fall Detection Using Convolutional Neural Networks
por: Santos, Guto Leoni, et al.
Publicado: (2019) -
One-Stage Multi-Sensor Data Fusion Convolutional Neural Network for 3D Object Detection
por: Li, Minle, et al.
Publicado: (2019) -
Fall Detection Using Multiple Bioradars and Convolutional Neural Networks
por: Anishchenko, Lesya, et al.
Publicado: (2019) -
Multi-Scale Feature Fusion Convolutional Neural Network for Indoor Small Target Detection
por: Huang, Li, et al.
Publicado: (2022)