Cargando…
EEG-Based Mental Tasks Recognition via a Deep Learning-Driven Anomaly Detector
This paper introduces an unsupervised deep learning-driven scheme for mental tasks’ recognition using EEG signals. To this end, the Multichannel Wiener filter was first applied to EEG signals as an artifact removal algorithm to achieve robust recognition. Then, a quadratic time-frequency distributio...
Autores principales: | Dairi, Abdelkader, Zerrouki, Nabil, Harrou, Fouzi, Sun, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776901/ https://www.ncbi.nlm.nih.gov/pubmed/36552991 http://dx.doi.org/10.3390/diagnostics12122984 |
Ejemplares similares
-
Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework
por: Kadri, Farid, et al.
Publicado: (2022) -
Forecasting emergency department overcrowding: A deep learning framework
por: Harrou, Fouzi, et al.
Publicado: (2020) -
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
por: Zeroual, Abdelhafid, et al.
Publicado: (2020) -
Comparative study of machine learning methods for COVID-19 transmission forecasting
por: Dairi, Abdelkader, et al.
Publicado: (2021) -
Semi-Supervised KPCA-Based Monitoring Techniques for Detecting COVID-19 Infection through Blood Tests
por: Harrou, Fouzi, et al.
Publicado: (2023)