Cargando…

Adipose-Derived Mesenchymal Stem Cells Alleviate Hypertrophic Scar by Inhibiting Bioactivity and Inducing Apoptosis in Hypertrophic Scar Fibroblasts

Background: As a fibrotic disease with a high incidence, the pathogenesis of hypertrophic scarring is still not fully understood, and the treatment of this disease is also challenging. In recent years, human adipose-derived mesenchymal stem cells (AD-MSCs) have been considered an effective treatment...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shiyi, Yang, Jinxiu, Sun, Jiachen, Chen, Minliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776926/
https://www.ncbi.nlm.nih.gov/pubmed/36552789
http://dx.doi.org/10.3390/cells11244024
_version_ 1784855978727964672
author Li, Shiyi
Yang, Jinxiu
Sun, Jiachen
Chen, Minliang
author_facet Li, Shiyi
Yang, Jinxiu
Sun, Jiachen
Chen, Minliang
author_sort Li, Shiyi
collection PubMed
description Background: As a fibrotic disease with a high incidence, the pathogenesis of hypertrophic scarring is still not fully understood, and the treatment of this disease is also challenging. In recent years, human adipose-derived mesenchymal stem cells (AD-MSCs) have been considered an effective treatment for hypertrophic scars. This study mainly explored whether the therapeutic effect of AD-MSCs on hypertrophic scars is associated with oxidative-stress-related proteins. Methods: AD-MSCs were isolated from adipose tissues and characterized through flow cytometry and a differentiation test. Afterwards, coculture, cell proliferation, apoptosis, and migration were detected. Western blotting and a quantitative real-time polymerase chain reaction (qRT–PCR) were used to detect oxidative stress-related genes and protein expression in hypertrophic scar fibroblasts (HSFs). Flow cytometry was used to detect reactive oxygen species (ROS). A nude mouse animal model was established; the effect of AD-MSCs on hypertrophic scars was observed; and hematoxylin and eosin staining, Masson’s staining, and immunofluorescence staining were performed. Furthermore, the content of oxidative-stress-related proteins, including nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), B-cell lymphoma 2(Bcl2), Bcl2-associated X(BAX) and caspase 3, was detected. Results: Our results showed that AD-MSCs inhibited HSFs’ proliferation and migration and promoted apoptosis. Moreover, after coculture, the expression of antioxidant enzymes, including HO-1, in HSFs decreased; the content of reactive oxygen species increased; and the expression of Nrf2 decreased significantly. In animal experiments, we found that, at 14 days after injection of AD-MSCs into human hypertrophic scar tissue blocks that were transplanted onto the dorsum of nude mice, the weight of the tissue blocks decreased significantly. Hematoxylin and eosin staining and Masson’s staining demonstrated a rearrangement of collagen fibers. We also found that Nrf2 and antioxidant enzymes decreased significantly, while apoptotic cells increased after AD-MSC treatment. Conclusions: Our results demonstrated that AD-MSCs efficiently cured hypertrophic scars by promoting the apoptosis of HSFs and by inhibiting their proliferation and migration, which may be related to the inhibition of Nrf2 expression in HSFs, suggesting that AD-MSCs may provide an alternative therapeutic approach for the treatment of hypertrophic scars.
format Online
Article
Text
id pubmed-9776926
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97769262022-12-23 Adipose-Derived Mesenchymal Stem Cells Alleviate Hypertrophic Scar by Inhibiting Bioactivity and Inducing Apoptosis in Hypertrophic Scar Fibroblasts Li, Shiyi Yang, Jinxiu Sun, Jiachen Chen, Minliang Cells Article Background: As a fibrotic disease with a high incidence, the pathogenesis of hypertrophic scarring is still not fully understood, and the treatment of this disease is also challenging. In recent years, human adipose-derived mesenchymal stem cells (AD-MSCs) have been considered an effective treatment for hypertrophic scars. This study mainly explored whether the therapeutic effect of AD-MSCs on hypertrophic scars is associated with oxidative-stress-related proteins. Methods: AD-MSCs were isolated from adipose tissues and characterized through flow cytometry and a differentiation test. Afterwards, coculture, cell proliferation, apoptosis, and migration were detected. Western blotting and a quantitative real-time polymerase chain reaction (qRT–PCR) were used to detect oxidative stress-related genes and protein expression in hypertrophic scar fibroblasts (HSFs). Flow cytometry was used to detect reactive oxygen species (ROS). A nude mouse animal model was established; the effect of AD-MSCs on hypertrophic scars was observed; and hematoxylin and eosin staining, Masson’s staining, and immunofluorescence staining were performed. Furthermore, the content of oxidative-stress-related proteins, including nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), B-cell lymphoma 2(Bcl2), Bcl2-associated X(BAX) and caspase 3, was detected. Results: Our results showed that AD-MSCs inhibited HSFs’ proliferation and migration and promoted apoptosis. Moreover, after coculture, the expression of antioxidant enzymes, including HO-1, in HSFs decreased; the content of reactive oxygen species increased; and the expression of Nrf2 decreased significantly. In animal experiments, we found that, at 14 days after injection of AD-MSCs into human hypertrophic scar tissue blocks that were transplanted onto the dorsum of nude mice, the weight of the tissue blocks decreased significantly. Hematoxylin and eosin staining and Masson’s staining demonstrated a rearrangement of collagen fibers. We also found that Nrf2 and antioxidant enzymes decreased significantly, while apoptotic cells increased after AD-MSC treatment. Conclusions: Our results demonstrated that AD-MSCs efficiently cured hypertrophic scars by promoting the apoptosis of HSFs and by inhibiting their proliferation and migration, which may be related to the inhibition of Nrf2 expression in HSFs, suggesting that AD-MSCs may provide an alternative therapeutic approach for the treatment of hypertrophic scars. MDPI 2022-12-12 /pmc/articles/PMC9776926/ /pubmed/36552789 http://dx.doi.org/10.3390/cells11244024 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Li, Shiyi
Yang, Jinxiu
Sun, Jiachen
Chen, Minliang
Adipose-Derived Mesenchymal Stem Cells Alleviate Hypertrophic Scar by Inhibiting Bioactivity and Inducing Apoptosis in Hypertrophic Scar Fibroblasts
title Adipose-Derived Mesenchymal Stem Cells Alleviate Hypertrophic Scar by Inhibiting Bioactivity and Inducing Apoptosis in Hypertrophic Scar Fibroblasts
title_full Adipose-Derived Mesenchymal Stem Cells Alleviate Hypertrophic Scar by Inhibiting Bioactivity and Inducing Apoptosis in Hypertrophic Scar Fibroblasts
title_fullStr Adipose-Derived Mesenchymal Stem Cells Alleviate Hypertrophic Scar by Inhibiting Bioactivity and Inducing Apoptosis in Hypertrophic Scar Fibroblasts
title_full_unstemmed Adipose-Derived Mesenchymal Stem Cells Alleviate Hypertrophic Scar by Inhibiting Bioactivity and Inducing Apoptosis in Hypertrophic Scar Fibroblasts
title_short Adipose-Derived Mesenchymal Stem Cells Alleviate Hypertrophic Scar by Inhibiting Bioactivity and Inducing Apoptosis in Hypertrophic Scar Fibroblasts
title_sort adipose-derived mesenchymal stem cells alleviate hypertrophic scar by inhibiting bioactivity and inducing apoptosis in hypertrophic scar fibroblasts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776926/
https://www.ncbi.nlm.nih.gov/pubmed/36552789
http://dx.doi.org/10.3390/cells11244024
work_keys_str_mv AT lishiyi adiposederivedmesenchymalstemcellsalleviatehypertrophicscarbyinhibitingbioactivityandinducingapoptosisinhypertrophicscarfibroblasts
AT yangjinxiu adiposederivedmesenchymalstemcellsalleviatehypertrophicscarbyinhibitingbioactivityandinducingapoptosisinhypertrophicscarfibroblasts
AT sunjiachen adiposederivedmesenchymalstemcellsalleviatehypertrophicscarbyinhibitingbioactivityandinducingapoptosisinhypertrophicscarfibroblasts
AT chenminliang adiposederivedmesenchymalstemcellsalleviatehypertrophicscarbyinhibitingbioactivityandinducingapoptosisinhypertrophicscarfibroblasts