Cargando…
Diagnostic and Prognostic Deep Learning Applications for Histological Assessment of Cutaneous Melanoma
SIMPLE SUMMARY: Melanoma is one of the most common malignancies in the United States. For the diagnosis of melanoma, histology images are examined by a trained pathologist. While this is the current gold standard for cancer diagnosis, this process requires substantial time and work and at a consider...
Autores principales: | Grant, Sydney R., Andrew, Tom W., Alvarez, Eileen V., Huss, Wendy J., Paragh, Gyorgy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776963/ https://www.ncbi.nlm.nih.gov/pubmed/36551716 http://dx.doi.org/10.3390/cancers14246231 |
Ejemplares similares
-
Mutation Hotspots Found in Bladder Cancer Aid Prediction of Carcinogenic Risk in Normal Urothelium
por: Grant, Sydney R., et al.
Publicado: (2023) -
The prognostic significance of the clinical and histological parameters in primary cutaneous melanoma patients
por: Antohe, Mihaela, et al.
Publicado: (2022) -
Apprising Diagnostic and Prognostic Biomarkers in Cutaneous Melanoma—Persistent Updating
por: Georgescu, Simona Roxana, et al.
Publicado: (2022) -
Application of Deep Learning on the Prognosis of Cutaneous Melanoma Based on Full Scan Pathology Images
por: Li, Anhai, et al.
Publicado: (2022) -
Deep-learning-based survival prediction of patients with cutaneous malignant melanoma
por: Yu, Hai, et al.
Publicado: (2023)