Cargando…
Automatic Feature Segmentation in Dental Periapical Radiographs
While a large number of archived digital images make it easy for radiology to provide data for Artificial Intelligence (AI) evaluation; AI algorithms are more and more applied in detecting diseases. The aim of the study is to perform a diagnostic evaluation on periapical radiographs with an AI model...
Autores principales: | Ari, Tugba, Sağlam, Hande, Öksüzoğlu, Hasan, Kazan, Orhan, Bayrakdar, İbrahim Şevki, Duman, Suayip Burak, Çelik, Özer, Jagtap, Rohan, Futyma-Gąbka, Karolina, Różyło-Kalinowska, Ingrid, Orhan, Kaan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777016/ https://www.ncbi.nlm.nih.gov/pubmed/36553088 http://dx.doi.org/10.3390/diagnostics12123081 |
Ejemplares similares
-
The U-Net Approaches to Evaluation of Dental Bite-Wing Radiographs: An Artificial Intelligence Study
por: Baydar, Oğuzhan, et al.
Publicado: (2023) -
An artifıcial ıntelligence approach to automatic tooth detection and numbering in panoramic radiographs
por: Bilgir, Elif, et al.
Publicado: (2021) -
Morphometric and morphological evaluation of mastoid emissary canal using cone-beam computed tomography
por: Temiz, Mustafa, et al.
Publicado: (2023) -
A U-Net Approach to Apical Lesion Segmentation on Panoramic Radiographs
por: Bayrakdar, Ibrahim S., et al.
Publicado: (2022) -
A Deep Learning Model for Idiopathic Osteosclerosis Detection on Panoramic Radiographs
por: Yesiltepe, Selin, et al.
Publicado: (2022)