Cargando…
Contextual Features and Information Bottleneck-Based Multi-Input Network for Breast Cancer Classification from Contrast-Enhanced Spectral Mammography
In computer-aided diagnosis methods for breast cancer, deep learning has been shown to be an effective method to distinguish whether lesions are present in tissues. However, traditional methods only classify masses as benign or malignant, according to their presence or absence, without considering t...
Autores principales: | Li, Xinmeng, Cui, Jia, Song, Jingqi, Jia, Mingyu, Zou, Zhenxing, Ding, Guocheng, Zheng, Yuanjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777091/ https://www.ncbi.nlm.nih.gov/pubmed/36553140 http://dx.doi.org/10.3390/diagnostics12123133 |
Ejemplares similares
-
Contrast-Enhanced Spectral Mammography: Comparison with Conventional Mammography and Histopathology in 152 Women
por: Luczyńska, Elzbieta, et al.
Publicado: (2014) -
Radiomic Feature Reduction Approach to Predict Breast Cancer by Contrast-Enhanced Spectral Mammography Images
por: Massafra, Raffaella, et al.
Publicado: (2021) -
Comparison between Breast MRI and Contrast-Enhanced Spectral Mammography
por: Łuczyńska, Elżbieta, et al.
Publicado: (2015) -
Contrast-enhanced spectral mammography with a compact synchrotron source
por: Heck, Lisa, et al.
Publicado: (2019) -
Quantitative Analysis of Enhancement Intensity and Patterns on Contrast-enhanced Spectral Mammography
por: Liu, Ying, et al.
Publicado: (2020)