Cargando…
Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network
Existing nuclei segmentation methods face challenges with hematoxylin and eosin (H&E) whole slide imaging (WSI) due to the variations in staining methods and nuclei shapes and sizes. Most existing approaches require a stain normalization step that may cause losing source information and fail to...
Autores principales: | Abdel-Nasser, Mohamed, Singh, Vivek Kumar, Mohamed, Ehab Mahmoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777104/ https://www.ncbi.nlm.nih.gov/pubmed/36553031 http://dx.doi.org/10.3390/diagnostics12123024 |
Ejemplares similares
-
Improving unsupervised stain-to-stain translation using self-supervision and meta-learning
por: Bouteldja, Nassim, et al.
Publicado: (2022) -
Investigating the Impact of the Bit Depth of Fluorescence-Stained Images on the Performance of Deep Learning-Based Nuclei Instance Segmentation
por: Mahbod, Amirreza, et al.
Publicado: (2021) -
LungINFseg: Segmenting COVID-19 Infected Regions in Lung CT Images Based on a Receptive-Field-Aware Deep Learning Framework
por: Kumar Singh, Vivek, et al.
Publicado: (2021) -
Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
por: Veta, Mitko, et al.
Publicado: (2013) -
Fully Automated Breast Density Segmentation and Classification Using Deep Learning
por: Saffari, Nasibeh, et al.
Publicado: (2020)