Cargando…
Genome-Wide Identification of Brassica napus PEN1-LIKE Genes and Their Expression Profiling in Insect-Susceptible and Resistant Cultivars
Recently, it has been reported that a gene (PEN1) in Arabidopsis thaliana is highly resistant to Plutella xylostella. We screened all the homologous genes of PEN1 in Arabidopsis thaliana and found that the motif of these genes was very conserved. At present, few insect resistance genes have been ide...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777220/ https://www.ncbi.nlm.nih.gov/pubmed/36547096 http://dx.doi.org/10.3390/cimb44120435 |
Sumario: | Recently, it has been reported that a gene (PEN1) in Arabidopsis thaliana is highly resistant to Plutella xylostella. We screened all the homologous genes of PEN1 in Arabidopsis thaliana and found that the motif of these genes was very conserved. At present, few insect resistance genes have been identified and characterized in Brassica napus. Therefore, we screened all the homologous genes containing this motif in the Brassica napus genome and systematically analyzed the basic information, conserved domain, evolutionary relationship, chromosomal localization and expression analysis of these genes. In this study, 12 PEN1 homologous genes were identified in the Brassica napus genome, which is more than the number in Arabidopsis thaliana. These genes are unevenly distributed on the 12 chromosomes in Brassica napus. Furthermore, all the PEN1 homologous genes contained light responsiveness elements, and most of the genes contained gibberellin-responsive elements, meJA-responsive elements and abscisic-acid-responsive elements. The results will provide a theoretical basis for screening insect resistance genes from the genome of Brassica napus and analyzing the molecular mechanism of insect resistance in Brassica napus. |
---|