Cargando…

Mechanisms and Management of Thyroid Disease and Atrial Fibrillation: Impact of Atrial Electrical Remodeling and Cardiac Fibrosis

Atrial fibrillation (AF) is the most common cardiac arrhythmia associated with increased cardiovascular morbidity and mortality. The pathophysiology of AF is characterized by electrical and structural remodeling occurring in the atrial myocardium. As a source of production of various hormones such a...

Descripción completa

Detalles Bibliográficos
Autores principales: Takawale, Abhijit, Aguilar, Martin, Bouchrit, Yasmina, Hiram, Roddy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777224/
https://www.ncbi.nlm.nih.gov/pubmed/36552815
http://dx.doi.org/10.3390/cells11244047
Descripción
Sumario:Atrial fibrillation (AF) is the most common cardiac arrhythmia associated with increased cardiovascular morbidity and mortality. The pathophysiology of AF is characterized by electrical and structural remodeling occurring in the atrial myocardium. As a source of production of various hormones such as angiotensin-2, calcitonin, and atrial natriuretic peptide, the atria are a target for endocrine regulation. Studies have shown that disorders associated with endocrine dysregulation are potential underlying causes of AF. The thyroid gland is an endocrine organ that secretes three hormones: triiodothyronine (T3), thyroxine (T4) and calcitonin. Thyroid dysregulation affects the cardiovascular system. Although there is a well-established relationship between thyroid disease (especially hyperthyroidism) and AF, the underlying biochemical mechanisms leading to atrial fibrosis and atrial arrhythmias are poorly understood in thyrotoxicosis. Various animal models and cellular studies demonstrated that thyroid hormones are involved in promoting AF substrate. This review explores the recent clinical and experimental evidence of the association between thyroid disease and AF. We highlight the current knowledge on the potential mechanisms underlying the pathophysiological impact of thyroid hormones T3 and T4 dysregulation, in the development of the atrial arrhythmogenic substrate. Finally, we review the available therapeutic strategies to treat AF in the context of thyroid disease.