Cargando…
Risk of Mortality Prediction Involving Time-Varying Covariates for Patients with Heart Failure Using Deep Learning
Heart failure (HF) is challenging public medical and healthcare systems. This study aimed to develop and validate a novel deep learning-based prognostic model to predict the risk of all-cause mortality for patients with HF. We also compared the performance of the proposed model with those of classic...
Autores principales: | Nakamura, Keijiro, Zhou, Xue, Sahara, Naohiko, Toyoda, Yasutake, Enomoto, Yoshinari, Hara, Hidehiko, Noro, Mahito, Sugi, Kaoru, Huang, Ming, Moroi, Masao, Nakamura, Masato, Zhu, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777280/ https://www.ncbi.nlm.nih.gov/pubmed/36552953 http://dx.doi.org/10.3390/diagnostics12122947 |
Ejemplares similares
-
Exploring and Identifying Prognostic Phenotypes of Patients with Heart Failure Guided by Explainable Machine Learning
por: Zhou, Xue, et al.
Publicado: (2022) -
Impact of right atrial structural remodeling on recurrence after ablation for atrial fibrillation
por: Takagi, Takahito, et al.
Publicado: (2021) -
The Association of Cardio-Ankle Vascular Index (CAVI) with Biatrial Remodeling in Atrial Fibrillation
por: Nakamura, Keijiro, et al.
Publicado: (2021) -
Heterogeneous scar with functional block in ventricular tachycardia circuit: Visualization of moderate high-density mapping
por: Sahara, Naohiko, et al.
Publicado: (2021) -
Outcomes of Brugada Syndrome Patients with Coronary Artery Vasospasm
por: Kujime, Shingo, et al.
Publicado: (2017)