Cargando…
Review of Semantic Segmentation of Medical Images Using Modified Architectures of UNET
In biomedical image analysis, information about the location and appearance of tumors and lesions is indispensable to aid doctors in treating and identifying the severity of diseases. Therefore, it is essential to segment the tumors and lesions. MRI, CT, PET, ultrasound, and X-ray are the different...
Autores principales: | Krithika alias AnbuDevi, M., Suganthi, K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777361/ https://www.ncbi.nlm.nih.gov/pubmed/36553071 http://dx.doi.org/10.3390/diagnostics12123064 |
Ejemplares similares
-
Active Learning with Bayesian UNet for Efficient Semantic Image Segmentation
por: Saidu, Isah Charles, et al.
Publicado: (2021) -
N-Net: an UNet architecture with dual encoder for medical image segmentation
por: Liang, Bingtao, et al.
Publicado: (2023) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023) -
Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation
por: Lu, Haoran, et al.
Publicado: (2022) -
Semantic Segmentation of Hyperspectral Remote Sensing Images Based on PSE-UNet Model
por: Li, Jiaju, et al.
Publicado: (2022)