Cargando…
Generation of CD34(+)CD43(+) Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells
Immunotherapy using primary T cells has revolutionized medical care in some pathologies in recent years, but limitations associated to challenging cell genome edition, insufficient cell number production, the use of only autologous cells, and the lack of product standardization have limited its clin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777438/ https://www.ncbi.nlm.nih.gov/pubmed/36552810 http://dx.doi.org/10.3390/cells11244046 |
_version_ | 1784856104093614080 |
---|---|
author | Flippe, Léa Gaignerie, Anne Sérazin, Céline Baron, Olivier Saulquin, Xavier Anegon, Ignacio David, Laurent Guillonneau, Carole |
author_facet | Flippe, Léa Gaignerie, Anne Sérazin, Céline Baron, Olivier Saulquin, Xavier Anegon, Ignacio David, Laurent Guillonneau, Carole |
author_sort | Flippe, Léa |
collection | PubMed |
description | Immunotherapy using primary T cells has revolutionized medical care in some pathologies in recent years, but limitations associated to challenging cell genome edition, insufficient cell number production, the use of only autologous cells, and the lack of product standardization have limited its clinical use. The alternative use of T cells generated in vitro from human pluripotent stem cells (hPSCs) offers great advantages by providing a self-renewing source of T cells that can be readily genetically modified and facilitate the use of standardized universal off-the-shelf allogeneic cell products and rapid clinical access. However, despite their potential, a better understanding of the feasibility and functionality of T cells differentiated from hPSCs is necessary before moving into clinical settings. In this study, we generated human-induced pluripotent stem cells from T cells (T-iPSCs), allowing for the preservation of already recombined TCR, with the same properties as human embryonic stem cells (hESCs). Based on these cells, we differentiated, with high efficiency, hematopoietic progenitor stem cells (HPSCs) capable of self-renewal and differentiation into any cell blood type, in addition to DN3a thymic progenitors from several T-iPSC lines. In order to better comprehend the differentiation, we analyzed the transcriptomic profiles of the different cell types and demonstrated that HPSCs differentiated from hiPSCs had very similar profiles to cord blood hematopoietic stem cells (HSCs). Furthermore, differentiated T-cell progenitors had a similar profile to thymocytes at the DN3a stage of thymic lymphopoiesis. Therefore, utilizing this approach, we were able to regenerate precursors of therapeutic human T cells in order to potentially treat a wide range of diseases. |
format | Online Article Text |
id | pubmed-9777438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97774382022-12-23 Generation of CD34(+)CD43(+) Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells Flippe, Léa Gaignerie, Anne Sérazin, Céline Baron, Olivier Saulquin, Xavier Anegon, Ignacio David, Laurent Guillonneau, Carole Cells Article Immunotherapy using primary T cells has revolutionized medical care in some pathologies in recent years, but limitations associated to challenging cell genome edition, insufficient cell number production, the use of only autologous cells, and the lack of product standardization have limited its clinical use. The alternative use of T cells generated in vitro from human pluripotent stem cells (hPSCs) offers great advantages by providing a self-renewing source of T cells that can be readily genetically modified and facilitate the use of standardized universal off-the-shelf allogeneic cell products and rapid clinical access. However, despite their potential, a better understanding of the feasibility and functionality of T cells differentiated from hPSCs is necessary before moving into clinical settings. In this study, we generated human-induced pluripotent stem cells from T cells (T-iPSCs), allowing for the preservation of already recombined TCR, with the same properties as human embryonic stem cells (hESCs). Based on these cells, we differentiated, with high efficiency, hematopoietic progenitor stem cells (HPSCs) capable of self-renewal and differentiation into any cell blood type, in addition to DN3a thymic progenitors from several T-iPSC lines. In order to better comprehend the differentiation, we analyzed the transcriptomic profiles of the different cell types and demonstrated that HPSCs differentiated from hiPSCs had very similar profiles to cord blood hematopoietic stem cells (HSCs). Furthermore, differentiated T-cell progenitors had a similar profile to thymocytes at the DN3a stage of thymic lymphopoiesis. Therefore, utilizing this approach, we were able to regenerate precursors of therapeutic human T cells in order to potentially treat a wide range of diseases. MDPI 2022-12-14 /pmc/articles/PMC9777438/ /pubmed/36552810 http://dx.doi.org/10.3390/cells11244046 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Flippe, Léa Gaignerie, Anne Sérazin, Céline Baron, Olivier Saulquin, Xavier Anegon, Ignacio David, Laurent Guillonneau, Carole Generation of CD34(+)CD43(+) Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells |
title | Generation of CD34(+)CD43(+) Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells |
title_full | Generation of CD34(+)CD43(+) Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells |
title_fullStr | Generation of CD34(+)CD43(+) Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells |
title_full_unstemmed | Generation of CD34(+)CD43(+) Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells |
title_short | Generation of CD34(+)CD43(+) Hematopoietic Progenitors to Induce Thymocytes from Human Pluripotent Stem Cells |
title_sort | generation of cd34(+)cd43(+) hematopoietic progenitors to induce thymocytes from human pluripotent stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777438/ https://www.ncbi.nlm.nih.gov/pubmed/36552810 http://dx.doi.org/10.3390/cells11244046 |
work_keys_str_mv | AT flippelea generationofcd34cd43hematopoieticprogenitorstoinducethymocytesfromhumanpluripotentstemcells AT gaignerieanne generationofcd34cd43hematopoieticprogenitorstoinducethymocytesfromhumanpluripotentstemcells AT serazinceline generationofcd34cd43hematopoieticprogenitorstoinducethymocytesfromhumanpluripotentstemcells AT baronolivier generationofcd34cd43hematopoieticprogenitorstoinducethymocytesfromhumanpluripotentstemcells AT saulquinxavier generationofcd34cd43hematopoieticprogenitorstoinducethymocytesfromhumanpluripotentstemcells AT anegonignacio generationofcd34cd43hematopoieticprogenitorstoinducethymocytesfromhumanpluripotentstemcells AT davidlaurent generationofcd34cd43hematopoieticprogenitorstoinducethymocytesfromhumanpluripotentstemcells AT guillonneaucarole generationofcd34cd43hematopoieticprogenitorstoinducethymocytesfromhumanpluripotentstemcells |