Cargando…
Driving Fatigue Detection with Three Non-Hair-Bearing EEG Channels and Modified Transformer Model
Driving fatigue is the main cause of traffic accidents, which seriously affects people’s life and property safety. Many researchers have applied electroencephalogram (EEG) signals for driving fatigue detection to reduce negative effects. The main challenges are the practicality and accuracy of the E...
Autores principales: | Wang, Jie, Xu, Yanting, Tian, Jinghong, Li, Huayun, Jiao, Weidong, Sun, Yu, Li, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777516/ https://www.ncbi.nlm.nih.gov/pubmed/36554120 http://dx.doi.org/10.3390/e24121715 |
Ejemplares similares
-
Reorganization of Brain Functional Network during Task Switching before and after Mental Fatigue
por: Zhong, Hongyang, et al.
Publicado: (2022) -
Driving Fatigue Detection from EEG Using a Modified PCANet Method
por: Ma, Yuliang, et al.
Publicado: (2019) -
A New Feature Analysis Approach to Selecting Channels of EEG for Fatigue Driving
por: Liao, Yiqi, et al.
Publicado: (2022) -
Classifying Driving Fatigue by Using EEG Signals
por: Zeng, Changqing, et al.
Publicado: (2022) -
A Practical Application for Quantitative Brain Fatigue Evaluation Based on Machine Learning and Ballistocardiogram
por: Xu, Yanting, et al.
Publicado: (2021)