Cargando…
AID-U-Net: An Innovative Deep Convolutional Architecture for Semantic Segmentation of Biomedical Images
Semantic segmentation of biomedical images found its niche in screening and diagnostic applications. Recent methods based on deep learning convolutional neural networks have been very effective, since they are readily adaptive to biomedical applications and outperform other competitive segmentation...
Autores principales: | Tashk, Ashkan, Herp, Jürgen, Bjørsum-Meyer, Thomas, Koulaouzidis, Anastasios, Nadimi, Esmaeil S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777521/ https://www.ncbi.nlm.nih.gov/pubmed/36552959 http://dx.doi.org/10.3390/diagnostics12122952 |
Ejemplares similares
-
Butterfly network: a convolutional neural network with a new architecture for multi-scale semantic segmentation of pedestrians
por: Alavianmehr, M. A., et al.
Publicado: (2023) -
Image Semantic Segmentation of Underwater Garbage with Modified U-Net Architecture Model
por: Wei, Lifu, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Semantic Segmentation of Digestive Abnormalities from WCE Images by Using AttResU-Net Architecture
por: Lafraxo, Samira, et al.
Publicado: (2023) -
Colon Capsule Endoscopy as a Diagnostic Adjunct in Patients with Symptoms from the Lower Gastrointestinal Tract
por: Bjørsum-Meyer, Thomas, et al.
Publicado: (2021)