Cargando…

Identification of the Collagen Types Essential for Mammalian Breast Acinar Structures

Modeling human breast tissue architecture is essential to study the pathophysiological conditions of the breast. We report that normal mammary epithelial cells grown in human breast extracellular matrix (ECM) hydrogel formed acini structurally similar to those of human and pig mammary tissues. Type...

Descripción completa

Detalles Bibliográficos
Autores principales: Keller, Chandler R., Ruud, Kelsey F., Martinez, Steve R., Li, Weimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777629/
https://www.ncbi.nlm.nih.gov/pubmed/36547361
http://dx.doi.org/10.3390/gels8120837
Descripción
Sumario:Modeling human breast tissue architecture is essential to study the pathophysiological conditions of the breast. We report that normal mammary epithelial cells grown in human breast extracellular matrix (ECM) hydrogel formed acini structurally similar to those of human and pig mammary tissues. Type I, II, III and V collagens were commonly identified in human, pig, and mouse breast ECM. Mammary epithelial cells formed acini on certain types or combinations of the four collagens at normal levels of breast tissue elasticity. Comparison of the collagen species in mouse normal breast and breast tumor ECM revealed common and distinct sets of collagens within the two types of tissues. Elevated expression of collagen type I alpha 1 chain (Col1a1) was found in mouse and human breast cancers. Collagen type XXV alpha 1 chain (Col25a1) was identified in mouse breast tumors but not in normal breast tissues. Our data provide strategies for modeling human breast pathophysiological structures and functions using native tissue-derived hydrogels and offer insight into the potential contributions of different collagen types in breast cancer development.