Cargando…
DIR-Net: Deep Residual Polar Decoding Network Based on Information Refinement
Polar codes are closer to the Shannon limit with lower complexity in coding and decoding. As traditional decoding techniques suffer from high latency and low throughput, with the development of deep learning technology, some deep learning-based decoding methods have been proposed to solve these prob...
Autores principales: | Song, Bixue, Feng, Yongxin, Wang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777643/ https://www.ncbi.nlm.nih.gov/pubmed/36554214 http://dx.doi.org/10.3390/e24121809 |
Ejemplares similares
-
How DIRS is refining concepts
por: Dalmau, Josep
Publicado: (2020) -
Deep residual inception encoder‐decoder network for amyloid PET harmonization
por: Shah, Jay, et al.
Publicado: (2022) -
Deep Concatenated Residual Networks for Improving Quality of Halftoning-Based BTC Decoded Image
por: Prasetyo, Heri, et al.
Publicado: (2021) -
Developing a healthcare dataset information resource (DIR) based on Semantic Web
por: Shi, Jingyi, et al.
Publicado: (2018) -
Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters
por: Champigny, Marc J, et al.
Publicado: (2011)