Cargando…
Optimal microRNA Sequencing Depth to Predict Cancer Patient Survival with Random Forest and Cox Models
(1) Background: tumor profiling enables patient survival prediction. The two essential parameters to be calibrated when designing a study based on tumor profiles from a cohort are the sequencing depth of RNA-seq technology and the number of patients. This calibration is carried out under cost constr...
Autores principales: | Jardillier, Rémy, Koca, Dzenis, Chatelain, Florent, Guyon, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777708/ https://www.ncbi.nlm.nih.gov/pubmed/36553544 http://dx.doi.org/10.3390/genes13122275 |
Ejemplares similares
-
Prognosis of lasso-like penalized Cox models with tumor profiling improves prediction over clinical data alone and benefits from bi-dimensional pre-screening
por: Jardillier, Rémy, et al.
Publicado: (2022) -
COL7A1 Expression Improves Prognosis Prediction for Patients with Clear Cell Renal Cell Carcinoma Atop of Stage
por: Koca, Dzenis, et al.
Publicado: (2023) -
PRECISION.seq: An R Package for Benchmarking Depth Normalization in microRNA Sequencing
por: Zou, Jian, et al.
Publicado: (2022) -
Territory-Wide Chinese Cohort of Long QT Syndrome: Random Survival Forest and Cox Analyses
por: Tse, Gary, et al.
Publicado: (2021) -
A comparison of random survival forest and Cox regression for prediction of mortality in patients with hemorrhagic stroke
por: Wang, Yuxin, et al.
Publicado: (2023)