Cargando…
Decomposed Entropy and Estimation of Output Power in Deformed Microcavity Lasers
Park et al. showed that the Shannon entropy of the probability distribution of a single random variable for far-field profiles (FFPs) in deformed microcavity lasers can efficiently measure the directionality of deformed microcavity lasers. In this study, we instead consider two random variables of F...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777739/ https://www.ncbi.nlm.nih.gov/pubmed/36554142 http://dx.doi.org/10.3390/e24121737 |
Sumario: | Park et al. showed that the Shannon entropy of the probability distribution of a single random variable for far-field profiles (FFPs) in deformed microcavity lasers can efficiently measure the directionality of deformed microcavity lasers. In this study, we instead consider two random variables of FFPs with joint probability distributions and introduce the decomposed (Shannon) entropy for the peak intensities of directional emissions. This provides a new foundation such that the decomposed entropy can estimate the degree of the output power at given FFPs without any further information. |
---|