Cargando…
Detection of Association Features Based on Gene Eigenvalues and MRI Imaging Using Genetic Weighted Random Forest
In the studies of Alzheimer’s disease (AD), jointly analyzing imaging data and genetic data provides an effective method to explore the potential biomarkers of AD. AD can be separated into healthy controls (HC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and AD. In...
Autores principales: | Hu, Zhixi, Wang, Xuanyan, Meng, Li, Liu, Wenjie, Wu, Feng, Meng, Xianglian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777775/ https://www.ncbi.nlm.nih.gov/pubmed/36553611 http://dx.doi.org/10.3390/genes13122344 |
Ejemplares similares
-
Feature Fusion and Detection in Alzheimer’s Disease Using a Novel Genetic Multi-Kernel SVM Based on MRI Imaging and Gene Data
por: Meng, Xianglian, et al.
Publicado: (2022) -
Hippocampal Subregion and Gene Detection in Alzheimer’s Disease Based on Genetic Clustering Random Forest
por: Li, Jin, et al.
Publicado: (2021) -
Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine
por: Meng, Xianglian, et al.
Publicado: (2022) -
Random matrices, Frobenius eigenvalues, and monodromy
por: Katz, Nicholas M, et al.
Publicado: (1998) -
Eigenvalue distribution of large random matrices
por: Pastur, Leonid, et al.
Publicado: (2011)