Cargando…
Understanding Hierarchical Processes
Hierarchical stochastic processes, such as the hierarchical Dirichlet process, hold an important position as a modelling tool in statistical machine learning, and are even used in deep neural networks. They allow, for instance, networks of probability vectors to be used in general statistical modell...
Autor principal: | Buntine, Wray |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777813/ https://www.ncbi.nlm.nih.gov/pubmed/36554108 http://dx.doi.org/10.3390/e24121703 |
Ejemplares similares
-
Hierarchical Gradient Smoothing for Probability Estimation Trees
por: Zhang, He, et al.
Publicado: (2020) -
A systematic review of the use of topic models for short text social media analysis
por: Laureate, Caitlin Doogan Poet, et al.
Publicado: (2023) -
Public Perceptions and Attitudes Toward COVID-19 Nonpharmaceutical Interventions Across Six Countries: A Topic Modeling Analysis of Twitter Data
por: Doogan, Caitlin, et al.
Publicado: (2020) -
Robust Attribute and Structure Preserving Graph Embedding
por: Hettige, Bhagya, et al.
Publicado: (2020) -
Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation
por: Balaguer-Ballester, Emili, et al.
Publicado: (2009)