Cargando…
A Parallel Multi-Modal Factorized Bilinear Pooling Fusion Method Based on the Semi-Tensor Product for Emotion Recognition
Multi-modal fusion can exploit complementary information from various modalities and improve the accuracy of prediction or classification tasks. In this paper, we propose a parallel, multi-modal, factorized, bilinear pooling method based on a semi-tensor product (STP) for information fusion in emoti...
Autores principales: | Liu, Fen, Chen, Jianfeng, Li, Kemeng, Tan, Weijie, Cai, Chang, Ayub, Muhammad Saad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777841/ https://www.ncbi.nlm.nih.gov/pubmed/36554241 http://dx.doi.org/10.3390/e24121836 |
Ejemplares similares
-
Finger vein recognition based on bilinear fusion of multiscale features
por: Ma, Bin, et al.
Publicado: (2023) -
Bilinear pooling in video-QA: empirical challenges and motivational drift from neurological parallels
por: Winterbottom, Thomas, et al.
Publicado: (2022) -
Sheep Face Recognition Model Based on Deep Learning and Bilinear Feature Fusion
por: Wan, Zhuang, et al.
Publicado: (2023) -
A Multi-Modal Fusion Method Based on Higher-Order Orthogonal Iteration Decomposition
por: Liu , Fen, et al.
Publicado: (2021) -
A compact expression for bilinear combination of Dirac spinors via world tensors
por: Rogalyov, R N
Publicado: (1994)