Cargando…
Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector
In this paper, for a highly coupled two-stage ejector-based cooling cycle, the optimization of primary nozzle length and angle of the second-stage ejector under varied primary nozzle diameters of the second stage was conducted first. Next, the evaluation for the influence of variable back pressure o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777881/ https://www.ncbi.nlm.nih.gov/pubmed/36554252 http://dx.doi.org/10.3390/e24121847 |
_version_ | 1784856216615256064 |
---|---|
author | Yan, Jia Shu, Yuetong Wang, Chen |
author_facet | Yan, Jia Shu, Yuetong Wang, Chen |
author_sort | Yan, Jia |
collection | PubMed |
description | In this paper, for a highly coupled two-stage ejector-based cooling cycle, the optimization of primary nozzle length and angle of the second-stage ejector under varied primary nozzle diameters of the second stage was conducted first. Next, the evaluation for the influence of variable back pressure on ER of the two-stage ejector was performed. Last, the identification of the effect of the variable back pressure on the key geometries of the two-stage ejector was carried out. The results revealed that: (1) with the increase of the nozzle diameter at the second stage, the ER of both stages decreased with the increases of the length and angle of the converging section of the second-stage primary nozzle; (2) the pressure lift ratio range of the second-stage ejector in the critical mode gradually increased with the increase of the nozzle diameter of the second-stage; (3) when the pressure lift ratio increased from 102% to 106%, the peak ER of the second-stage decreased, and the influence of the area ratio and nozzle exit position of the second-stage ejector on its ER was reduced; (4) with the increase of nozzle diameter of the second-stage, the influence of area ratio and nozzle exit position of the second-stage on the second-stage performance decreased; and (5) the optimal AR of the second stage decreased but the optimal nozzle exit position of the second stage kept constant with the pressure lift ratio of the two-stage ejector. |
format | Online Article Text |
id | pubmed-9777881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97778812022-12-23 Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector Yan, Jia Shu, Yuetong Wang, Chen Entropy (Basel) Article In this paper, for a highly coupled two-stage ejector-based cooling cycle, the optimization of primary nozzle length and angle of the second-stage ejector under varied primary nozzle diameters of the second stage was conducted first. Next, the evaluation for the influence of variable back pressure on ER of the two-stage ejector was performed. Last, the identification of the effect of the variable back pressure on the key geometries of the two-stage ejector was carried out. The results revealed that: (1) with the increase of the nozzle diameter at the second stage, the ER of both stages decreased with the increases of the length and angle of the converging section of the second-stage primary nozzle; (2) the pressure lift ratio range of the second-stage ejector in the critical mode gradually increased with the increase of the nozzle diameter of the second-stage; (3) when the pressure lift ratio increased from 102% to 106%, the peak ER of the second-stage decreased, and the influence of the area ratio and nozzle exit position of the second-stage ejector on its ER was reduced; (4) with the increase of nozzle diameter of the second-stage, the influence of area ratio and nozzle exit position of the second-stage on the second-stage performance decreased; and (5) the optimal AR of the second stage decreased but the optimal nozzle exit position of the second stage kept constant with the pressure lift ratio of the two-stage ejector. MDPI 2022-12-18 /pmc/articles/PMC9777881/ /pubmed/36554252 http://dx.doi.org/10.3390/e24121847 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yan, Jia Shu, Yuetong Wang, Chen Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector |
title | Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector |
title_full | Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector |
title_fullStr | Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector |
title_full_unstemmed | Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector |
title_short | Effect of Back Pressure on Performances and Key Geometries of the Second Stage in a Highly Coupled Two-Stage Ejector |
title_sort | effect of back pressure on performances and key geometries of the second stage in a highly coupled two-stage ejector |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777881/ https://www.ncbi.nlm.nih.gov/pubmed/36554252 http://dx.doi.org/10.3390/e24121847 |
work_keys_str_mv | AT yanjia effectofbackpressureonperformancesandkeygeometriesofthesecondstageinahighlycoupledtwostageejector AT shuyuetong effectofbackpressureonperformancesandkeygeometriesofthesecondstageinahighlycoupledtwostageejector AT wangchen effectofbackpressureonperformancesandkeygeometriesofthesecondstageinahighlycoupledtwostageejector |