Cargando…
Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles
The availability of massive gene expression data has been challenging in terms of how to cure, process, and extract useful information. Here, we describe the use of entropic measures as discriminating criteria in cancer using the whole data set of gene expression levels. These methods were applied i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777913/ https://www.ncbi.nlm.nih.gov/pubmed/36554151 http://dx.doi.org/10.3390/e24121744 |
_version_ | 1784856224708165632 |
---|---|
author | Mesa-Rodríguez, Ania Gonzalez, Augusto Estevez-Rams, Ernesto Valdes-Sosa, Pedro A. |
author_facet | Mesa-Rodríguez, Ania Gonzalez, Augusto Estevez-Rams, Ernesto Valdes-Sosa, Pedro A. |
author_sort | Mesa-Rodríguez, Ania |
collection | PubMed |
description | The availability of massive gene expression data has been challenging in terms of how to cure, process, and extract useful information. Here, we describe the use of entropic measures as discriminating criteria in cancer using the whole data set of gene expression levels. These methods were applied in classifying samples between tumor and normal type for 13 types of tumors with a high success ratio. Using gene expression, ordered by pathways, results in complexity–entropy diagrams. The map allows the clustering of the tumor and normal types samples, with a high success rate for nine of the thirteen, studied cancer types. Further analysis using information distance also shows good discriminating behavior, but, more importantly, allows for discriminating between cancer types. Together, our results allow the classification of tissues without the need to identify relevant genes or impose a particular cancer model. The used procedure can be extended to classification problems beyond the reported results. |
format | Online Article Text |
id | pubmed-9777913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97779132022-12-23 Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles Mesa-Rodríguez, Ania Gonzalez, Augusto Estevez-Rams, Ernesto Valdes-Sosa, Pedro A. Entropy (Basel) Article The availability of massive gene expression data has been challenging in terms of how to cure, process, and extract useful information. Here, we describe the use of entropic measures as discriminating criteria in cancer using the whole data set of gene expression levels. These methods were applied in classifying samples between tumor and normal type for 13 types of tumors with a high success ratio. Using gene expression, ordered by pathways, results in complexity–entropy diagrams. The map allows the clustering of the tumor and normal types samples, with a high success rate for nine of the thirteen, studied cancer types. Further analysis using information distance also shows good discriminating behavior, but, more importantly, allows for discriminating between cancer types. Together, our results allow the classification of tissues without the need to identify relevant genes or impose a particular cancer model. The used procedure can be extended to classification problems beyond the reported results. MDPI 2022-11-29 /pmc/articles/PMC9777913/ /pubmed/36554151 http://dx.doi.org/10.3390/e24121744 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mesa-Rodríguez, Ania Gonzalez, Augusto Estevez-Rams, Ernesto Valdes-Sosa, Pedro A. Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles |
title | Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles |
title_full | Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles |
title_fullStr | Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles |
title_full_unstemmed | Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles |
title_short | Cancer Segmentation by Entropic Analysis of Ordered Gene Expression Profiles |
title_sort | cancer segmentation by entropic analysis of ordered gene expression profiles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777913/ https://www.ncbi.nlm.nih.gov/pubmed/36554151 http://dx.doi.org/10.3390/e24121744 |
work_keys_str_mv | AT mesarodriguezania cancersegmentationbyentropicanalysisoforderedgeneexpressionprofiles AT gonzalezaugusto cancersegmentationbyentropicanalysisoforderedgeneexpressionprofiles AT estevezramsernesto cancersegmentationbyentropicanalysisoforderedgeneexpressionprofiles AT valdessosapedroa cancersegmentationbyentropicanalysisoforderedgeneexpressionprofiles |