Cargando…
Online Detection of Impurities in Corn Deep-Bed Drying Process Utilizing Machine Vision
Online detection of impurities content in the corn deep-bed drying process is the key technology to ensure stable operation and to provide data support for self-adapting control of drying equipment. In this study, an automatic approach to corn image acquisition, impurity classification and recogniti...
Autores principales: | Li, Tao, Tong, Jinjie, Liu, Muhua, Yao, Mingyin, Xiao, Zhifeng, Li, Chengjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777920/ https://www.ncbi.nlm.nih.gov/pubmed/36553752 http://dx.doi.org/10.3390/foods11244009 |
Ejemplares similares
-
Exergoeconomic Analysis of Corn Drying in a Novel Industrial Drying System
por: Li, Bin, et al.
Publicado: (2020) -
Online Machine Vision-Based Modeling during Cantaloupe Microwave Drying Utilizing Extreme Learning Machine and Artificial Neural Network
por: Zhu, Guanyu, et al.
Publicado: (2023) -
Novel Method of Increased Efficiency Corn Drying on a Fixed Bed by Condensation
por: Fu, Daping, et al.
Publicado: (2023) -
Online Detection System for Wheat Machine Harvesting Impurity Rate Based on DeepLabV3+
por: Chen, Man, et al.
Publicado: (2022) -
Deep impurities in semiconductors
por: Milnes, Arthur George
Publicado: (1973)