Cargando…
Study on Rice Grain Mildewed Region Recognition Based on Microscopic Computer Vision and YOLO-v5 Model
This study aims to develop a high-speed and nondestructive mildewed rice grain detection method. First, a set of microscopic images of rice grains contaminated by Aspergillus niger, Penicillium citrinum, and Aspergillus cinerea are acquired to serve as samples, and the mildewed regions are marked. T...
Autores principales: | Sun, Ke, Zhang, Yu-Jie, Tong, Si-Yuan, Tang, Meng-Di, Wang, Chang-Bao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777938/ https://www.ncbi.nlm.nih.gov/pubmed/36553773 http://dx.doi.org/10.3390/foods11244031 |
Ejemplares similares
-
Rice Grain Detection and Counting Method Based on TCLE–YOLO Model
por: Zou, Yu, et al.
Publicado: (2023) -
Yolo-Based Traffic Sign Recognition Algorithm
por: Li, Ming, et al.
Publicado: (2022) -
Enhancing UAV Visual Landing Recognition with YOLO’s Object Detection by Onboard Edge Computing
por: Ma, Ming-You, et al.
Publicado: (2023) -
Retracted: Yolo-Based Traffic Sign Recognition Algorithm
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Detection and Recognition of Pollen Grains in Multilabel Microscopic Images
por: Kubera, Elżbieta, et al.
Publicado: (2022)