Cargando…
Clinical Decision Support Framework for Segmentation and Classification of Brain Tumor MRIs Using a U-Net and DCNN Cascaded Learning Algorithm
Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its ear...
Autores principales: | Samee, Nagwan Abdel, Ahmad, Tahir, Mahmoud, Noha F., Atteia, Ghada, Abdallah, Hanaa A., Rizwan, Atif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777942/ https://www.ncbi.nlm.nih.gov/pubmed/36553864 http://dx.doi.org/10.3390/healthcare10122340 |
Ejemplares similares
-
DFTSA-Net: Deep Feature Transfer-Based Stacked Autoencoder Network for DME Diagnosis
por: Atteia, Ghada, et al.
Publicado: (2021) -
Classification Framework for Medical Diagnosis of Brain Tumor with an Effective Hybrid Transfer Learning Model
por: Samee, Nagwan Abdel, et al.
Publicado: (2022) -
BO-ALLCNN: Bayesian-Based Optimized CNN for Acute Lymphoblastic Leukemia Detection in Microscopic Blood Smear Images
por: Atteia, Ghada, et al.
Publicado: (2022) -
A Healthcare Paradigm for Deriving Knowledge Using Online Consumers’ Feedback
por: Nawaz, Aftab, et al.
Publicado: (2022) -
Segmentation of the prostate, its zones, anterior fibromuscular stroma, and urethra on the MRIs and multimodality image fusion using U-Net model
por: Rezaeijo, Seyed Masoud, et al.
Publicado: (2022)