Cargando…
Joint Deep Reinforcement Learning and Unsupervised Learning for Channel Selection and Power Control in D2D Networks
Device-to-device (D2D) technology enables direct communication between devices, which can effectively solve the problem of insufficient spectrum resources in 5G communication technology. Since the channels are shared among multiple D2D user pairs, it may lead to serious interference between D2D user...
Autores principales: | Sun, Ming, Jin, Yanhui, Wang, Shumei, Mei, Erzhuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777944/ https://www.ncbi.nlm.nih.gov/pubmed/36554127 http://dx.doi.org/10.3390/e24121722 |
Ejemplares similares
-
Unsupervised Video Summarization Based on Deep Reinforcement Learning with Interpolation
por: Yoon, Ui Nyoung, et al.
Publicado: (2023) -
Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks
por: Weidel, Philipp, et al.
Publicado: (2021) -
CAPES: Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement Learning
por: Miller, Ethan L.
Publicado: (2017) -
Joint Optimization of Bandwidth and Power Allocation in Uplink Systems with Deep Reinforcement Learning
por: Zhang, Chongli, et al.
Publicado: (2023) -
Simplified Deep Reinforcement Learning Approach for Channel Prediction in Power Domain NOMA System
por: Gaballa, Mohamed, et al.
Publicado: (2023)