Cargando…

Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling

Breast cancer is one of the most widely recognized diseases after skin cancer. Though it can occur in all kinds of people, it is undeniably more common in women. Several analytical techniques, such as Breast MRI, X-ray, Thermography, Mammograms, Ultrasound, etc., are utilized to identify it. In this...

Descripción completa

Detalles Bibliográficos
Autores principales: Pathan, Refat Khan, Alam, Fahim Irfan, Yasmin, Suraiya, Hamd, Zuhal Y., Aljuaid, Hanan, Khandaker, Mayeen Uddin, Lau, Sian Lun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777990/
https://www.ncbi.nlm.nih.gov/pubmed/36553891
http://dx.doi.org/10.3390/healthcare10122367
Descripción
Sumario:Breast cancer is one of the most widely recognized diseases after skin cancer. Though it can occur in all kinds of people, it is undeniably more common in women. Several analytical techniques, such as Breast MRI, X-ray, Thermography, Mammograms, Ultrasound, etc., are utilized to identify it. In this study, artificial intelligence was used to rapidly detect breast cancer by analyzing ultrasound images from the Breast Ultrasound Images Dataset (BUSI), which consists of three categories: Benign, Malignant, and Normal. The relevant dataset comprises grayscale and masked ultrasound images of diagnosed patients. Validation tests were accomplished for quantitative outcomes utilizing the exhibition measures for each procedure. The proposed framework is discovered to be effective, substantiating outcomes with only raw image evaluation giving a 78.97% test accuracy and masked image evaluation giving 81.02% test precision, which could decrease human errors in the determination cycle. Additionally, our described framework accomplishes higher accuracy after using multi-headed CNN with two processed datasets based on masked and original images, where the accuracy hopped up to 92.31% (±2) with a Mean Squared Error (MSE) loss of 0.05. This work primarily contributes to identifying the usefulness of multi-headed CNN when working with two different types of data inputs. Finally, a web interface has been made to make this model usable for non-technical personals.