Cargando…

Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes

Necroptosis is a newly developed cell death pathway that differs from necrosis and apoptosis; however, the potential mechanism of necroptosis-related genes in EAC and whether they are associated with the prognosis of EAC patients remain unclear. We obtained 159 NRGs from the Kyoto Encyclopedia of Ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Suhong, Liu, Shuang, Lin, Zheng, Zhang, Juwei, Lin, Zhifeng, Fang, Haiyin, Hu, Zhijian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778007/
https://www.ncbi.nlm.nih.gov/pubmed/36553511
http://dx.doi.org/10.3390/genes13122243
_version_ 1784856250195902464
author Zhang, Suhong
Liu, Shuang
Lin, Zheng
Zhang, Juwei
Lin, Zhifeng
Fang, Haiyin
Hu, Zhijian
author_facet Zhang, Suhong
Liu, Shuang
Lin, Zheng
Zhang, Juwei
Lin, Zhifeng
Fang, Haiyin
Hu, Zhijian
author_sort Zhang, Suhong
collection PubMed
description Necroptosis is a newly developed cell death pathway that differs from necrosis and apoptosis; however, the potential mechanism of necroptosis-related genes in EAC and whether they are associated with the prognosis of EAC patients remain unclear. We obtained 159 NRGs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and performed differential expression analysis of the NRGs in 9 normal samples and 78 EAC tumor samples derived from The Cancer Genome Atlas (TCGA). Finally, we screened 38 differentially expressed NRGs (DE-NRGs). The results of the GO and KEGG analyses indicated that the DE-NRGs were mainly enriched in the functions and pathways associated with necroptosis. Protein interaction network (PPI) analysis revealed that TNF, CASP1, and IL-1B were the core genes of the network. A risk score model based on four DE-NRGs was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) regression, and the results showed that the higher the risk score, the worse the survival. The model achieved more efficient diagnosis compared with the clinicopathological variables, with an area under the receiver operating characteristic (ROC) curve of 0.885. The prognostic value of this model was further validated using Gene Expression Omnibus (GEO) datasets. Gene set enrichment analyses (GSEA) demonstrated that several metabolism-related pathways were activated in the high-risk population. Single-sample GSEA (ssGSEA) provided further confirmation that this prognostic model was remarkably associated with the immune status of EAC patients. Finally, the nomogram map exhibited a certain prognostic prediction efficiency, with a C-index of 0.792 and good consistency. Thus, the prognostic model based on four NRGs could better predict the prognosis of EAC and help to elucidate the mechanism of necroptosis-related genes in EAC, which can provide guidance for the target prediction and clinical treatment of EAC patients.
format Online
Article
Text
id pubmed-9778007
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97780072022-12-23 Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes Zhang, Suhong Liu, Shuang Lin, Zheng Zhang, Juwei Lin, Zhifeng Fang, Haiyin Hu, Zhijian Genes (Basel) Article Necroptosis is a newly developed cell death pathway that differs from necrosis and apoptosis; however, the potential mechanism of necroptosis-related genes in EAC and whether they are associated with the prognosis of EAC patients remain unclear. We obtained 159 NRGs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and performed differential expression analysis of the NRGs in 9 normal samples and 78 EAC tumor samples derived from The Cancer Genome Atlas (TCGA). Finally, we screened 38 differentially expressed NRGs (DE-NRGs). The results of the GO and KEGG analyses indicated that the DE-NRGs were mainly enriched in the functions and pathways associated with necroptosis. Protein interaction network (PPI) analysis revealed that TNF, CASP1, and IL-1B were the core genes of the network. A risk score model based on four DE-NRGs was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) regression, and the results showed that the higher the risk score, the worse the survival. The model achieved more efficient diagnosis compared with the clinicopathological variables, with an area under the receiver operating characteristic (ROC) curve of 0.885. The prognostic value of this model was further validated using Gene Expression Omnibus (GEO) datasets. Gene set enrichment analyses (GSEA) demonstrated that several metabolism-related pathways were activated in the high-risk population. Single-sample GSEA (ssGSEA) provided further confirmation that this prognostic model was remarkably associated with the immune status of EAC patients. Finally, the nomogram map exhibited a certain prognostic prediction efficiency, with a C-index of 0.792 and good consistency. Thus, the prognostic model based on four NRGs could better predict the prognosis of EAC and help to elucidate the mechanism of necroptosis-related genes in EAC, which can provide guidance for the target prediction and clinical treatment of EAC patients. MDPI 2022-11-29 /pmc/articles/PMC9778007/ /pubmed/36553511 http://dx.doi.org/10.3390/genes13122243 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Suhong
Liu, Shuang
Lin, Zheng
Zhang, Juwei
Lin, Zhifeng
Fang, Haiyin
Hu, Zhijian
Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes
title Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes
title_full Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes
title_fullStr Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes
title_full_unstemmed Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes
title_short Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes
title_sort development and validation of a prognostic model for esophageal adenocarcinoma based on necroptosis-related genes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778007/
https://www.ncbi.nlm.nih.gov/pubmed/36553511
http://dx.doi.org/10.3390/genes13122243
work_keys_str_mv AT zhangsuhong developmentandvalidationofaprognosticmodelforesophagealadenocarcinomabasedonnecroptosisrelatedgenes
AT liushuang developmentandvalidationofaprognosticmodelforesophagealadenocarcinomabasedonnecroptosisrelatedgenes
AT linzheng developmentandvalidationofaprognosticmodelforesophagealadenocarcinomabasedonnecroptosisrelatedgenes
AT zhangjuwei developmentandvalidationofaprognosticmodelforesophagealadenocarcinomabasedonnecroptosisrelatedgenes
AT linzhifeng developmentandvalidationofaprognosticmodelforesophagealadenocarcinomabasedonnecroptosisrelatedgenes
AT fanghaiyin developmentandvalidationofaprognosticmodelforesophagealadenocarcinomabasedonnecroptosisrelatedgenes
AT huzhijian developmentandvalidationofaprognosticmodelforesophagealadenocarcinomabasedonnecroptosisrelatedgenes