Cargando…

Entanglement and Fisher Information for Atoms–Field System in the Presence of Negative Binomial States

We developed a quantum scheme of two atoms (TAs) and field initially in a negative binomial state (NBS). We displayed and discussed the physical implications of the obtained results in terms of the physical parameters of the model. By considering that the TAs were initially prepared in a maximally e...

Descripción completa

Detalles Bibliográficos
Autores principales: Berrada, Kamal, Abdel-Khalek, Sayed, Algarni, Mariam, Eleuch, Hichem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778021/
https://www.ncbi.nlm.nih.gov/pubmed/36554222
http://dx.doi.org/10.3390/e24121817
Descripción
Sumario:We developed a quantum scheme of two atoms (TAs) and field initially in a negative binomial state (NBS). We displayed and discussed the physical implications of the obtained results in terms of the physical parameters of the model. By considering that the TAs were initially prepared in a maximally entangled state, and that the single-mode field was in the NBS, the dynamics of quantum phenomena such TAs–field entanglement, TAs entanglement, and parameter estimation were examined. We found that the quantum quantifiers exhibited randomly quasi-periodic and periodic oscillations that depended on the success probability, photon number transition, and the intensity-dependent coupling effect. Furthermore, we analyzed the connection between the dynamical behavior of the quantifiers. This system can be compared with some other ones that are being discussed in the literature, in order to realize the quantum entanglement, and to control the precision of the parameter estimation.