Cargando…

Extended Divergence on a Foliation by Deformed Probability Simplexes

This study considers a new decomposition of an extended divergence on a foliation by deformed probability simplexes from the information geometry perspective. In particular, we treat the case where each deformed probability simplex corresponds to a set of q-escort distributions. For the foliation, d...

Descripción completa

Detalles Bibliográficos
Autor principal: Uohashi, Keiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778038/
https://www.ncbi.nlm.nih.gov/pubmed/36554141
http://dx.doi.org/10.3390/e24121736
Descripción
Sumario:This study considers a new decomposition of an extended divergence on a foliation by deformed probability simplexes from the information geometry perspective. In particular, we treat the case where each deformed probability simplex corresponds to a set of q-escort distributions. For the foliation, different q-parameters and the corresponding [Formula: see text]-parameters of dualistic structures are defined on each of the various leaves. We propose the divergence decomposition theorem that guides the proximity of q-escort distributions with different q-parameters and compare the new theorem to the previous theorem of the standard divergence on a Hessian manifold with a fixed [Formula: see text]-parameter.