Cargando…
A Dual-Stage Attention Model for Tool Wear Prediction in Dry Milling Operation
The intelligent monitoring of tool wear status and wear prediction are important factors affecting the intelligent development of the modern machinery industry. Many scholars have used deep learning methods to achieve certain results in tool wear prediction. However, due to the instability and varia...
Autores principales: | Qin, Yongrui, Li, Jiangfeng, Zhang, Chenxi, Zhao, Qinpei, Ma, Xiaofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778040/ https://www.ncbi.nlm.nih.gov/pubmed/36554138 http://dx.doi.org/10.3390/e24121733 |
Ejemplares similares
-
Sentiment Analysis on Online Videos by Time-Sync Comments
por: Li, Jiangfeng, et al.
Publicado: (2023) -
Investigation of Tool Wear and Chip Morphology in Dry Trochoidal Milling of Titanium Alloy Ti–6Al–4V
por: Liu, Dongsheng, et al.
Publicado: (2019) -
Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling (†)
por: Wiciak-Pikuła, Martyna, et al.
Publicado: (2020) -
Effect of Machining Parameters and Tool Wear on Surface Uniformity in Micro-Milling
por: Sun, Zhanwen, et al.
Publicado: (2018) -
The Effects of Lubricooling Ecosustainable Techniques on Tool Wear in Carbon Steel Milling
por: Villarrazo, Nagore, et al.
Publicado: (2023)