Cargando…
Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments
Natural gels are emerging as a hotspot of global research for their greenness, environmental-friendliness, and good hydrate inhibition performance. However, previous studies mostly performed experiments for simple pure water systems and the inhibition mechanism in the sediment environment remains un...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778188/ https://www.ncbi.nlm.nih.gov/pubmed/36547282 http://dx.doi.org/10.3390/gels8120758 |
_version_ | 1784856296033353728 |
---|---|
author | Wang, Jianlong Sun, Jinsheng Bian, Hang Wang, Qibing Feng, Zhenbo Lu, Cheng Ren, Han Cheng, Rongchao Wang, Jintang Wang, Ren |
author_facet | Wang, Jianlong Sun, Jinsheng Bian, Hang Wang, Qibing Feng, Zhenbo Lu, Cheng Ren, Han Cheng, Rongchao Wang, Jintang Wang, Ren |
author_sort | Wang, Jianlong |
collection | PubMed |
description | Natural gels are emerging as a hotspot of global research for their greenness, environmental-friendliness, and good hydrate inhibition performance. However, previous studies mostly performed experiments for simple pure water systems and the inhibition mechanism in the sediment environment remains unclear. Given this, the inhibition performance of xanthan gum and pectin on hydrate nucleation and growth in sediment environments was evaluated via hydrate formation inhibition tests, and the inhibition internal mechanisms were revealed via a comprehensive analysis integrating various methods. Furthermore, the influences of natural gels on sediment dispersion stability and low-temperature fluid rheology were investigated. Research showed that the sediments of gas hydrate reservoirs in the South China Sea are mainly composed of micro-nano quartz and clay minerals. Xanthan gum and pectin can effectively inhibit the hydrate formation via the joint effects of the binding, disturbing, and interlayer mass transfer suppression processes. Sediments promote hydrate nucleation and yet inhibit hydrate growth. The interaction of sediments with active groups of natural gels weakens the abilities of gels to inhibit hydrate nucleation and reduce hydrate formation. Nonetheless, sediments help gels to slow down hydrate formation. Our comprehensive analysis pointed out that pectin with a concentration of 0.5 wt% can effectively inhibit the hydrate nucleation and growth while improving the dispersion stability and low-temperature rheology of sediment-containing fluids. |
format | Online Article Text |
id | pubmed-9778188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97781882022-12-23 Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments Wang, Jianlong Sun, Jinsheng Bian, Hang Wang, Qibing Feng, Zhenbo Lu, Cheng Ren, Han Cheng, Rongchao Wang, Jintang Wang, Ren Gels Article Natural gels are emerging as a hotspot of global research for their greenness, environmental-friendliness, and good hydrate inhibition performance. However, previous studies mostly performed experiments for simple pure water systems and the inhibition mechanism in the sediment environment remains unclear. Given this, the inhibition performance of xanthan gum and pectin on hydrate nucleation and growth in sediment environments was evaluated via hydrate formation inhibition tests, and the inhibition internal mechanisms were revealed via a comprehensive analysis integrating various methods. Furthermore, the influences of natural gels on sediment dispersion stability and low-temperature fluid rheology were investigated. Research showed that the sediments of gas hydrate reservoirs in the South China Sea are mainly composed of micro-nano quartz and clay minerals. Xanthan gum and pectin can effectively inhibit the hydrate formation via the joint effects of the binding, disturbing, and interlayer mass transfer suppression processes. Sediments promote hydrate nucleation and yet inhibit hydrate growth. The interaction of sediments with active groups of natural gels weakens the abilities of gels to inhibit hydrate nucleation and reduce hydrate formation. Nonetheless, sediments help gels to slow down hydrate formation. Our comprehensive analysis pointed out that pectin with a concentration of 0.5 wt% can effectively inhibit the hydrate nucleation and growth while improving the dispersion stability and low-temperature rheology of sediment-containing fluids. MDPI 2022-11-22 /pmc/articles/PMC9778188/ /pubmed/36547282 http://dx.doi.org/10.3390/gels8120758 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Jianlong Sun, Jinsheng Bian, Hang Wang, Qibing Feng, Zhenbo Lu, Cheng Ren, Han Cheng, Rongchao Wang, Jintang Wang, Ren Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments |
title | Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments |
title_full | Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments |
title_fullStr | Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments |
title_full_unstemmed | Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments |
title_short | Kinetic Hydrate Inhibition of Natural Gels in Complex Sediment Environments |
title_sort | kinetic hydrate inhibition of natural gels in complex sediment environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778188/ https://www.ncbi.nlm.nih.gov/pubmed/36547282 http://dx.doi.org/10.3390/gels8120758 |
work_keys_str_mv | AT wangjianlong kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT sunjinsheng kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT bianhang kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT wangqibing kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT fengzhenbo kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT lucheng kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT renhan kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT chengrongchao kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT wangjintang kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments AT wangren kinetichydrateinhibitionofnaturalgelsincomplexsedimentenvironments |